Nuprl Lemma : prop-truncation-implies
∀T:Type. ((∀a,b:T. (a = b ∈ T))
⇒ ⇃(T)
⇒ T)
Proof
Definitions occuring in Statement :
quotient: x,y:A//B[x; y]
,
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
true: True
,
universe: Type
,
equal: s = t ∈ T
Definitions unfolded in proof :
so_apply: x[s]
,
so_lambda: λ2x.t[x]
,
uimplies: b supposing a
,
so_apply: x[s1;s2]
,
so_lambda: λ2x y.t[x; y]
,
prop: ℙ
,
uall: ∀[x:A]. B[x]
,
guard: {T}
,
label: ...$L... t
,
and: P ∧ Q
,
quotient: x,y:A//B[x; y]
,
member: t ∈ T
,
implies: P
⇒ Q
,
all: ∀x:A. B[x]
Lemmas referenced :
equal_wf,
all_wf,
equiv_rel_true,
quotient_wf,
true_wf,
equal-wf-base
Rules used in proof :
universeEquality,
independent_isectElimination,
lambdaEquality,
cumulativity,
because_Cache,
isectElimination,
extract_by_obid,
productEquality,
equalitySymmetry,
equalityTransitivity,
dependent_functionElimination,
hypothesis,
thin,
productElimination,
cut,
pertypeElimination,
sqequalRule,
sqequalHypSubstitution,
hypothesisEquality,
pointwiseFunctionalityForEquality,
introduction,
rename,
lambdaFormation,
sqequalReflexivity,
computationStep,
sqequalTransitivity,
sqequalSubstitution
Latex:
\mforall{}T:Type. ((\mforall{}a,b:T. (a = b)) {}\mRightarrow{} \00D9(T) {}\mRightarrow{} T)
Date html generated:
2017_09_29-PM-06_07_26
Last ObjectModification:
2017_09_04-PM-03_51_03
Theory : continuity
Home
Index