Nuprl Lemma : prop-truncation-implies
∀T:Type. ((∀a,b:T.  (a = b ∈ T)) 
⇒ ⇃(T) 
⇒ T)
Proof
Definitions occuring in Statement : 
quotient: x,y:A//B[x; y]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
true: True
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
uimplies: b supposing a
, 
so_apply: x[s1;s2]
, 
so_lambda: λ2x y.t[x; y]
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
guard: {T}
, 
label: ...$L... t
, 
and: P ∧ Q
, 
quotient: x,y:A//B[x; y]
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
Lemmas referenced : 
equal_wf, 
all_wf, 
equiv_rel_true, 
quotient_wf, 
true_wf, 
equal-wf-base
Rules used in proof : 
universeEquality, 
independent_isectElimination, 
lambdaEquality, 
cumulativity, 
because_Cache, 
isectElimination, 
extract_by_obid, 
productEquality, 
equalitySymmetry, 
equalityTransitivity, 
dependent_functionElimination, 
hypothesis, 
thin, 
productElimination, 
cut, 
pertypeElimination, 
sqequalRule, 
sqequalHypSubstitution, 
hypothesisEquality, 
pointwiseFunctionalityForEquality, 
introduction, 
rename, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}T:Type.  ((\mforall{}a,b:T.    (a  =  b))  {}\mRightarrow{}  \00D9(T)  {}\mRightarrow{}  T)
Date html generated:
2017_09_29-PM-06_07_26
Last ObjectModification:
2017_09_04-PM-03_51_03
Theory : continuity
Home
Index