Nuprl Lemma : prop-truncation-implies

T:Type. ((∀a,b:T.  (a b ∈ T))  ⇃(T)  T)


Proof




Definitions occuring in Statement :  quotient: x,y:A//B[x; y] all: x:A. B[x] implies:  Q true: True universe: Type equal: t ∈ T
Definitions unfolded in proof :  so_apply: x[s] so_lambda: λ2x.t[x] uimplies: supposing a so_apply: x[s1;s2] so_lambda: λ2y.t[x; y] prop: uall: [x:A]. B[x] guard: {T} label: ...$L... t and: P ∧ Q quotient: x,y:A//B[x; y] member: t ∈ T implies:  Q all: x:A. B[x]
Lemmas referenced :  equal_wf all_wf equiv_rel_true quotient_wf true_wf equal-wf-base
Rules used in proof :  universeEquality independent_isectElimination lambdaEquality cumulativity because_Cache isectElimination extract_by_obid productEquality equalitySymmetry equalityTransitivity dependent_functionElimination hypothesis thin productElimination cut pertypeElimination sqequalRule sqequalHypSubstitution hypothesisEquality pointwiseFunctionalityForEquality introduction rename lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}T:Type.  ((\mforall{}a,b:T.    (a  =  b))  {}\mRightarrow{}  \00D9(T)  {}\mRightarrow{}  T)



Date html generated: 2017_09_29-PM-06_07_26
Last ObjectModification: 2017_09_04-PM-03_51_03

Theory : continuity


Home Index