Nuprl Lemma : real-continuity2
∀a,b:ℝ.
  ∀f:[a, b] ⟶ℝ
    ((∀x,y:{x:ℝ| x ∈ [a, b]} .  (f x ≠ f y ⇒ x ≠ y))
    ⇒ (∀k:ℕ+. ∃d:{d:ℝ| r0 < d} . ∀x,y:{x:ℝ| x ∈ [a, b]} .  ((|x - y| ≤ d) ⇒ (|(f x) - f y| ≤ (r1/r(k)))))) 
  supposing a ≤ b
Proof
Definitions occuring in Statement : 
rfun: I ⟶ℝ, 
rccint: [l, u], 
i-member: r ∈ I, 
rdiv: (x/y), 
rneq: x ≠ y, 
rleq: x ≤ y, 
rless: x < y, 
rabs: |x|, 
rsub: x - y, 
int-to-real: r(n), 
real: ℝ, 
nat_plus: ℕ+, 
uimplies: b supposing a, 
all: ∀x:A. B[x], 
exists: ∃x:A. B[x], 
implies: P ⇒ Q, 
set: {x:A| B[x]} , 
apply: f a, 
natural_number: $n
Definitions unfolded in proof : 
top: Top, 
exists: ∃x:A. B[x], 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
squash: ↓T, 
less_than: a < b, 
nat_plus: ℕ+, 
sq_exists: ∃x:A [B[x]], 
rless: x < y, 
or: P ∨ Q, 
rneq: x ≠ y, 
iff: P ⇐⇒ Q, 
rfun: I ⟶ℝ, 
real-fun: real-fun(f;a;b), 
prop: ℙ, 
real: ℝ, 
subtype_rel: A ⊆r B, 
uall: ∀[x:A]. B[x], 
false: False, 
implies: P ⇒ Q, 
not: ¬A, 
and: P ∧ Q, 
le: A ≤ B, 
rnonneg: rnonneg(x), 
rleq: x ≤ y, 
uimplies: b supposing a, 
member: t ∈ T, 
all: ∀x:A. B[x], 
real-sfun: real-sfun(f;a;b), 
real-cont: real-cont(f;a;b)
Lemmas referenced : 
int_formula_prop_wf, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_term_value_add_lemma, 
int_formula_prop_less_lemma, 
itermConstant_wf, 
itermVar_wf, 
itermAdd_wf, 
intformless_wf, 
full-omega-unsat, 
nat_plus_properties, 
req_weakening, 
rneq_functionality, 
rneq_wf, 
not-rneq, 
req_wf, 
i-member_wf, 
rleq_wf, 
rccint_wf, 
rfun_wf, 
real-sfun_wf, 
nat_plus_wf, 
real_wf, 
rsub_wf, 
less_than'_wf, 
real-continuity-ext
Rules used in proof : 
voidEquality, 
isect_memberEquality, 
intEquality, 
int_eqEquality, 
dependent_pairFormation, 
approximateComputation, 
imageElimination, 
unionElimination, 
independent_functionElimination, 
because_Cache, 
setEquality, 
independent_isectElimination, 
equalitySymmetry, 
equalityTransitivity, 
axiomEquality, 
natural_numberEquality, 
minusEquality, 
rename, 
setElimination, 
applyEquality, 
isectElimination, 
voidElimination, 
independent_pairEquality, 
productElimination, 
lambdaEquality, 
isect_memberFormation, 
hypothesisEquality, 
thin, 
dependent_functionElimination, 
sqequalHypSubstitution, 
hypothesis, 
lambdaFormation, 
extract_by_obid, 
introduction, 
cut, 
computationStep, 
sqequalTransitivity, 
sqequalReflexivity, 
sqequalRule, 
sqequalSubstitution
Latex:
\mforall{}a,b:\mBbbR{}.
    \mforall{}f:[a,  b]  {}\mrightarrow{}\mBbbR{}
        ((\mforall{}x,y:\{x:\mBbbR{}|  x  \mmember{}  [a,  b]\}  .    (f  x  \mneq{}  f  y  {}\mRightarrow{}  x  \mneq{}  y))
        {}\mRightarrow{}  (\mforall{}k:\mBbbN{}\msupplus{}
                    \mexists{}d:\{d:\mBbbR{}|  r0  <  d\} 
                      \mforall{}x,y:\{x:\mBbbR{}|  x  \mmember{}  [a,  b]\}  .    ((|x  -  y|  \mleq{}  d)  {}\mRightarrow{}  (|(f  x)  -  f  y|  \mleq{}  (r1/r(k)))))) 
    supposing  a  \mleq{}  b
Date html generated:
2018_05_22-PM-02_11_26
Last ObjectModification:
2018_05_21-AM-00_27_05
Theory : reals
Home
Index