Nuprl Lemma : real-continuity2

a,b:ℝ.
  ∀f:[a, b] ⟶ℝ
    ((∀x,y:{x:ℝx ∈ [a, b]} .  (f x ≠  x ≠ y))
     (∀k:ℕ+. ∃d:{d:ℝr0 < d} . ∀x,y:{x:ℝx ∈ [a, b]} .  ((|x y| ≤ d)  (|(f x) y| ≤ (r1/r(k)))))) 
  supposing a ≤ b


Proof




Definitions occuring in Statement :  rfun: I ⟶ℝ rccint: [l, u] i-member: r ∈ I rdiv: (x/y) rneq: x ≠ y rleq: x ≤ y rless: x < y rabs: |x| rsub: y int-to-real: r(n) real: nat_plus: + uimplies: supposing a all: x:A. B[x] exists: x:A. B[x] implies:  Q set: {x:A| B[x]}  apply: a natural_number: $n
Definitions unfolded in proof :  top: Top exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) squash: T less_than: a < b nat_plus: + sq_exists: x:A [B[x]] rless: x < y or: P ∨ Q rneq: x ≠ y iff: ⇐⇒ Q rfun: I ⟶ℝ real-fun: real-fun(f;a;b) prop: real: subtype_rel: A ⊆B uall: [x:A]. B[x] false: False implies:  Q not: ¬A and: P ∧ Q le: A ≤ B rnonneg: rnonneg(x) rleq: x ≤ y uimplies: supposing a member: t ∈ T all: x:A. B[x] real-sfun: real-sfun(f;a;b) real-cont: real-cont(f;a;b)
Lemmas referenced :  int_formula_prop_wf int_term_value_constant_lemma int_term_value_var_lemma int_term_value_add_lemma int_formula_prop_less_lemma itermConstant_wf itermVar_wf itermAdd_wf intformless_wf full-omega-unsat nat_plus_properties req_weakening rneq_functionality rneq_wf not-rneq req_wf i-member_wf rleq_wf rccint_wf rfun_wf real-sfun_wf nat_plus_wf real_wf rsub_wf less_than'_wf real-continuity-ext
Rules used in proof :  voidEquality isect_memberEquality intEquality int_eqEquality dependent_pairFormation approximateComputation imageElimination unionElimination independent_functionElimination because_Cache setEquality independent_isectElimination equalitySymmetry equalityTransitivity axiomEquality natural_numberEquality minusEquality rename setElimination applyEquality isectElimination voidElimination independent_pairEquality productElimination lambdaEquality isect_memberFormation hypothesisEquality thin dependent_functionElimination sqequalHypSubstitution hypothesis lambdaFormation extract_by_obid introduction cut computationStep sqequalTransitivity sqequalReflexivity sqequalRule sqequalSubstitution

Latex:
\mforall{}a,b:\mBbbR{}.
    \mforall{}f:[a,  b]  {}\mrightarrow{}\mBbbR{}
        ((\mforall{}x,y:\{x:\mBbbR{}|  x  \mmember{}  [a,  b]\}  .    (f  x  \mneq{}  f  y  {}\mRightarrow{}  x  \mneq{}  y))
        {}\mRightarrow{}  (\mforall{}k:\mBbbN{}\msupplus{}
                    \mexists{}d:\{d:\mBbbR{}|  r0  <  d\} 
                      \mforall{}x,y:\{x:\mBbbR{}|  x  \mmember{}  [a,  b]\}  .    ((|x  -  y|  \mleq{}  d)  {}\mRightarrow{}  (|(f  x)  -  f  y|  \mleq{}  (r1/r(k)))))) 
    supposing  a  \mleq{}  b



Date html generated: 2018_05_22-PM-02_11_26
Last ObjectModification: 2018_05_21-AM-00_27_05

Theory : reals


Home Index