Nuprl Lemma : real-sfun_wf

[a,b:ℝ]. ∀[f:[a, b] ⟶ℝ].  (real-sfun(f;a;b) ∈ ℙ)


Proof




Definitions occuring in Statement :  real-sfun: real-sfun(f;a;b) rfun: I ⟶ℝ rccint: [l, u] real: uall: [x:A]. B[x] prop: member: t ∈ T
Definitions unfolded in proof :  so_apply: x[s] rfun: I ⟶ℝ implies:  Q so_lambda: λ2x.t[x] prop: and: P ∧ Q top: Top all: x:A. B[x] real-sfun: real-sfun(f;a;b) member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  rccint_wf rfun_wf rneq_wf rleq_wf real_wf all_wf member_rccint_lemma
Rules used in proof :  equalitySymmetry equalityTransitivity axiomEquality dependent_set_memberEquality applyEquality functionEquality rename setElimination lambdaFormation lambdaEquality because_Cache hypothesisEquality productEquality setEquality isectElimination hypothesis voidEquality voidElimination isect_memberEquality thin dependent_functionElimination sqequalHypSubstitution extract_by_obid sqequalRule cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[a,b:\mBbbR{}].  \mforall{}[f:[a,  b]  {}\mrightarrow{}\mBbbR{}].    (real-sfun(f;a;b)  \mmember{}  \mBbbP{})



Date html generated: 2016_07_08-PM-06_03_02
Last ObjectModification: 2016_07_05-PM-02_50_06

Theory : reals


Home Index