Nuprl Lemma : real-sfun_wf
∀[a,b:ℝ]. ∀[f:[a, b] ⟶ℝ].  (real-sfun(f;a;b) ∈ ℙ)
Proof
Definitions occuring in Statement : 
real-sfun: real-sfun(f;a;b)
, 
rfun: I ⟶ℝ
, 
rccint: [l, u]
, 
real: ℝ
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
Definitions unfolded in proof : 
so_apply: x[s]
, 
rfun: I ⟶ℝ
, 
implies: P 
⇒ Q
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
and: P ∧ Q
, 
top: Top
, 
all: ∀x:A. B[x]
, 
real-sfun: real-sfun(f;a;b)
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
rccint_wf, 
rfun_wf, 
rneq_wf, 
rleq_wf, 
real_wf, 
all_wf, 
member_rccint_lemma
Rules used in proof : 
equalitySymmetry, 
equalityTransitivity, 
axiomEquality, 
dependent_set_memberEquality, 
applyEquality, 
functionEquality, 
rename, 
setElimination, 
lambdaFormation, 
lambdaEquality, 
because_Cache, 
hypothesisEquality, 
productEquality, 
setEquality, 
isectElimination, 
hypothesis, 
voidEquality, 
voidElimination, 
isect_memberEquality, 
thin, 
dependent_functionElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
sqequalRule, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[a,b:\mBbbR{}].  \mforall{}[f:[a,  b]  {}\mrightarrow{}\mBbbR{}].    (real-sfun(f;a;b)  \mmember{}  \mBbbP{})
Date html generated:
2016_07_08-PM-06_03_02
Last ObjectModification:
2016_07_05-PM-02_50_06
Theory : reals
Home
Index