Step
*
1
of Lemma
real-ring_wf
1. λx,y. (x + y) ∈ (x,y:ℝ//(x = y)) ⟶ (x,y:ℝ//(x = y)) ⟶ (x,y:ℝ//(x = y))
2. λx,y. (x * y) ∈ (x,y:ℝ//(x = y)) ⟶ (x,y:ℝ//(x = y)) ⟶ (x,y:ℝ//(x = y))
3. λx.-(x) ∈ (x,y:ℝ//(x = y)) ⟶ (x,y:ℝ//(x = y))
⊢ real-ring() ∈ CRng
BY
{ ((MemTypeCD THENW Auto) THEN Try ((MemTypeCD THENW Auto))) }
1
1. λx,y. (x + y) ∈ (x,y:ℝ//(x = y)) ⟶ (x,y:ℝ//(x = y)) ⟶ (x,y:ℝ//(x = y))
2. λx,y. (x * y) ∈ (x,y:ℝ//(x = y)) ⟶ (x,y:ℝ//(x = y)) ⟶ (x,y:ℝ//(x = y))
3. λx.-(x) ∈ (x,y:ℝ//(x = y)) ⟶ (x,y:ℝ//(x = y))
⊢ real-ring() ∈ RngSig
2
.....set predicate.....
1. λx,y. (x + y) ∈ (x,y:ℝ//(x = y)) ⟶ (x,y:ℝ//(x = y)) ⟶ (x,y:ℝ//(x = y))
2. λx,y. (x * y) ∈ (x,y:ℝ//(x = y)) ⟶ (x,y:ℝ//(x = y)) ⟶ (x,y:ℝ//(x = y))
3. λx.-(x) ∈ (x,y:ℝ//(x = y)) ⟶ (x,y:ℝ//(x = y))
⊢ IsRing(|real-ring()|;+real-ring();0;-real-ring();*;1)
3
.....set predicate.....
1. λx,y. (x + y) ∈ (x,y:ℝ//(x = y)) ⟶ (x,y:ℝ//(x = y)) ⟶ (x,y:ℝ//(x = y))
2. λx,y. (x * y) ∈ (x,y:ℝ//(x = y)) ⟶ (x,y:ℝ//(x = y)) ⟶ (x,y:ℝ//(x = y))
3. λx.-(x) ∈ (x,y:ℝ//(x = y)) ⟶ (x,y:ℝ//(x = y))
⊢ Comm(|real-ring()|;*)
Latex:
Latex:
1. \mlambda{}x,y. (x + y) \mmember{} (x,y:\mBbbR{}//(x = y)) {}\mrightarrow{} (x,y:\mBbbR{}//(x = y)) {}\mrightarrow{} (x,y:\mBbbR{}//(x = y))
2. \mlambda{}x,y. (x * y) \mmember{} (x,y:\mBbbR{}//(x = y)) {}\mrightarrow{} (x,y:\mBbbR{}//(x = y)) {}\mrightarrow{} (x,y:\mBbbR{}//(x = y))
3. \mlambda{}x.-(x) \mmember{} (x,y:\mBbbR{}//(x = y)) {}\mrightarrow{} (x,y:\mBbbR{}//(x = y))
\mvdash{} real-ring() \mmember{} CRng
By
Latex:
((MemTypeCD THENW Auto) THEN Try ((MemTypeCD THENW Auto)))
Home
Index