Step
*
1
1
1
1
of Lemma
reg-seq-mul-regular-eventually
1. x : ℕ+ ⟶ ℤ
2. y : ℕ+ ⟶ ℤ
3. B : ℕ+
4. b : ℕ+
5. ∀n,m:{b...}. ((2 * ((m * |x n|) + (n * |y m|))) ≤ ((n * m) * ((4 * B) - 2)))
6. n : {b...}
7. m : {b...}
8. r1 : {r:ℤ| |r| < |2 * n|}
9. r2 : {r:ℤ| |r| < |2 * m|}
⊢ ((((|m| * |x n|) * (2 * 1) * (n + m)) + ((|n| * |y m|) * (2 * 1) * (n + m)))
+ ((|m| * |m|) * |-r1|)
+ ((|n| * |n|) * |r2|)) ≤ ((|2| * |n| * |m|) * (2 * B) * (n + m))
BY
{ (((Subst' |m| ~ m 0 THENA Auto) THEN (Subst' |n| ~ n 0 THENA Auto))
THEN (Assert |-r1| ≤ ((2 * n) - 1) BY
(Subst' |-r1| ~ |r1| 0
THEN Auto
THEN DVar `r1'
THEN Unhide
THEN Auto
THEN Subst' |2 * n| ~ 2 * n -2
THEN Auto))
THEN (Assert |r2| ≤ ((2 * m) - 1) BY
(Subst' |-r1| ~ |r1| 0 THEN DVar `r2' THEN Unhide THEN Auto THEN Subst' |2 * m| ~ 2 * m -2 THEN Auto))) }
1
1. x : ℕ+ ⟶ ℤ
2. y : ℕ+ ⟶ ℤ
3. B : ℕ+
4. b : ℕ+
5. ∀n,m:{b...}. ((2 * ((m * |x n|) + (n * |y m|))) ≤ ((n * m) * ((4 * B) - 2)))
6. n : {b...}
7. m : {b...}
8. r1 : {r:ℤ| |r| < |2 * n|}
9. r2 : {r:ℤ| |r| < |2 * m|}
10. |-r1| ≤ ((2 * n) - 1)
11. |r2| ≤ ((2 * m) - 1)
⊢ ((((m * |x n|) * (2 * 1) * (n + m)) + ((n * |y m|) * (2 * 1) * (n + m))) + ((m * m) * |-r1|) + ((n * n) * |r2|))
≤ ((|2| * n * m) * (2 * B) * (n + m))
Latex:
Latex:
1. x : \mBbbN{}\msupplus{} {}\mrightarrow{} \mBbbZ{}
2. y : \mBbbN{}\msupplus{} {}\mrightarrow{} \mBbbZ{}
3. B : \mBbbN{}\msupplus{}
4. b : \mBbbN{}\msupplus{}
5. \mforall{}n,m:\{b...\}. ((2 * ((m * |x n|) + (n * |y m|))) \mleq{} ((n * m) * ((4 * B) - 2)))
6. n : \{b...\}
7. m : \{b...\}
8. r1 : \{r:\mBbbZ{}| |r| < |2 * n|\}
9. r2 : \{r:\mBbbZ{}| |r| < |2 * m|\}
\mvdash{} ((((|m| * |x n|) * (2 * 1) * (n + m)) + ((|n| * |y m|) * (2 * 1) * (n + m)))
+ ((|m| * |m|) * |-r1|)
+ ((|n| * |n|) * |r2|)) \mleq{} ((|2| * |n| * |m|) * (2 * B) * (n + m))
By
Latex:
(((Subst' |m| \msim{} m 0 THENA Auto) THEN (Subst' |n| \msim{} n 0 THENA Auto))
THEN (Assert |-r1| \mleq{} ((2 * n) - 1) BY
(Subst' |-r1| \msim{} |r1| 0
THEN Auto
THEN DVar `r1'
THEN Unhide
THEN Auto
THEN Subst' |2 * n| \msim{} 2 * n -2
THEN Auto))
THEN (Assert |r2| \mleq{} ((2 * m) - 1) BY
(Subst' |-r1| \msim{} |r1| 0
THEN DVar `r2'
THEN Unhide
THEN Auto
THEN Subst' |2 * m| \msim{} 2 * m -2
THEN Auto)))
Home
Index