Step
*
1
of Lemma
reg_seq_mul-regular-eventually
1. x : ℕ+ ⟶ ℤ
2. regular-seq(x)
3. y : ℕ+ ⟶ ℤ
4. regular-seq(y)
5. B : ℕ+
6. b : ℕ+
7. ∀n,m:{b...}. ((2 * ((m * |x n|) + (n * |y m|))) ≤ ((n * m) * ((4 * B) - 1)))
8. n : {b...}
9. m : {b...}
⊢ |(2 * n * m) * ((m * (reg_seq_mul(x;y) n)) - n * (reg_seq_mul(x;y) m))| ≤ (|2 * n * m| * (2 * B) * (n + m))
BY
{ ((Subst ⌜(2 * n * m) * ((m * (reg_seq_mul(x;y) n)) - n * (reg_seq_mul(x;y) m)) ~ ((m * m)
* (2 * n)
* (reg_seq_mul(x;y) n)) - (n * n) * (2 * m) * (reg_seq_mul(x;y) m)⌝ 0⋅
THENA Auto
)
THEN (Assert ∀n:ℕ+. (|((2 * n) * (reg_seq_mul(x;y) n)) - (x n) * (y n)| ≤ n) BY
((D 0 THENA Auto) THEN RepUR ``reg_seq_mul`` 0 THEN Mul ⌜2⌝ 0⋅ THEN Auto))
THEN MoveToConcl (-1)
THEN (GenConclTerm ⌜reg_seq_mul(x;y)⌝⋅ THENA Auto)
THEN (D 0 THENA Auto)
THEN (Subst' |2 * n * m| ~ 2 * n * m 0 THENA Auto)) }
1
1. x : ℕ+ ⟶ ℤ
2. regular-seq(x)
3. y : ℕ+ ⟶ ℤ
4. regular-seq(y)
5. B : ℕ+
6. b : ℕ+
7. ∀n,m:{b...}. ((2 * ((m * |x n|) + (n * |y m|))) ≤ ((n * m) * ((4 * B) - 1)))
8. n : {b...}
9. m : {b...}
10. v : ℕ+ ⟶ ℤ
11. reg_seq_mul(x;y) = v ∈ (ℕ+ ⟶ ℤ)
12. ∀n:ℕ+. (|((2 * n) * (v n)) - (x n) * (y n)| ≤ n)
⊢ |((m * m) * (2 * n) * (v n)) - (n * n) * (2 * m) * (v m)| ≤ ((2 * n * m) * (2 * B) * (n + m))
Latex:
Latex:
1. x : \mBbbN{}\msupplus{} {}\mrightarrow{} \mBbbZ{}
2. regular-seq(x)
3. y : \mBbbN{}\msupplus{} {}\mrightarrow{} \mBbbZ{}
4. regular-seq(y)
5. B : \mBbbN{}\msupplus{}
6. b : \mBbbN{}\msupplus{}
7. \mforall{}n,m:\{b...\}. ((2 * ((m * |x n|) + (n * |y m|))) \mleq{} ((n * m) * ((4 * B) - 1)))
8. n : \{b...\}
9. m : \{b...\}
\mvdash{} |(2 * n * m) * ((m * (reg\_seq\_mul(x;y) n)) - n * (reg\_seq\_mul(x;y) m))| \mleq{} (|2 * n * m|
* (2 * B)
* (n + m))
By
Latex:
((Subst \mkleeneopen{}(2 * n * m) * ((m * (reg\_seq\_mul(x;y) n)) - n * (reg\_seq\_mul(x;y) m)) \msim{} ((m * m)
* (2 * n)
* (reg\_seq\_mul(x;y) n)) - (n * n) * (2 * m) * (reg\_seq\_mul(x;y) m)\mkleeneclose{} 0\mcdot{}
THENA Auto
)
THEN (Assert \mforall{}n:\mBbbN{}\msupplus{}. (|((2 * n) * (reg\_seq\_mul(x;y) n)) - (x n) * (y n)| \mleq{} n) BY
((D 0 THENA Auto) THEN RepUR ``reg\_seq\_mul`` 0 THEN Mul \mkleeneopen{}2\mkleeneclose{} 0\mcdot{} THEN Auto))
THEN MoveToConcl (-1)
THEN (GenConclTerm \mkleeneopen{}reg\_seq\_mul(x;y)\mkleeneclose{}\mcdot{} THENA Auto)
THEN (D 0 THENA Auto)
THEN (Subst' |2 * n * m| \msim{} 2 * n * m 0 THENA Auto))
Home
Index