Nuprl Lemma : reg_seq_mul-regular-eventually
∀[x,y:ℝ].
  ∀B,b:ℕ+.
    ∀n,m:{b...}.  (|(m * (reg_seq_mul(x;y) n)) - n * (reg_seq_mul(x;y) m)| ≤ ((2 * B) * (n + m))) 
    supposing ∀n,m:{b...}.  ((2 * ((m * |x n|) + (n * |y m|))) ≤ ((n * m) * ((4 * B) - 1)))
Proof
Definitions occuring in Statement : 
reg_seq_mul: reg_seq_mul(x;y)
, 
real: ℝ
, 
absval: |i|
, 
int_upper: {i...}
, 
nat_plus: ℕ+
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
le: A ≤ B
, 
all: ∀x:A. B[x]
, 
apply: f a
, 
multiply: n * m
, 
subtract: n - m
, 
add: n + m
, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
uimplies: b supposing a
, 
real: ℝ
, 
int_upper: {i...}
, 
nat_plus: ℕ+
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
top: Top
, 
and: P ∧ Q
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
nat: ℕ
, 
sq_stable: SqStable(P)
, 
true: True
, 
nequal: a ≠ b ∈ T 
, 
sq_type: SQType(T)
, 
guard: {T}
, 
int_nzero: ℤ-o
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
squash: ↓T
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
le: A ≤ B
, 
reg_seq_mul: reg_seq_mul(x;y)
, 
less_than: a < b
, 
cand: A c∧ B
, 
ge: i ≥ j 
, 
regular-int-seq: k-regular-seq(f)
, 
rev_uimplies: rev_uimplies(P;Q)
, 
uiff: uiff(P;Q)
Lemmas referenced : 
sq_stable__le, 
absval_wf, 
subtract_wf, 
reg_seq_mul_wf, 
int_upper_properties, 
nat_plus_properties, 
decidable__lt, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformless_wf, 
itermConstant_wf, 
itermVar_wf, 
intformle_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_not_lemma, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_wf, 
istype-less_than, 
mul_cancel_in_le, 
absval_nat_plus, 
int_entire_a, 
subtype_base_sq, 
int_subtype_base, 
mul_nzero, 
subtype_rel_sets_simple, 
le_wf, 
nequal_wf, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
istype-le, 
squash_wf, 
true_wf, 
absval_mul, 
subtype_rel_self, 
iff_weakening_equal, 
istype-int_upper, 
le_witness_for_triv, 
nat_plus_wf, 
real_wf, 
decidable__equal_int, 
itermMultiply_wf, 
itermSubtract_wf, 
int_term_value_mul_lemma, 
int_term_value_subtract_lemma, 
rounding-div_wf, 
rounding-div-property, 
nat_wf, 
set_subtype_base, 
absval-non-neg, 
absval_pos, 
multiply_nat_wf, 
decidable__le, 
upper_subtype_nat, 
le_weakening2, 
nat_properties, 
mul_preserves_le, 
absval-diff-symmetry, 
itermAdd_wf, 
int_term_value_add_lemma, 
le_functionality, 
le_transitivity, 
int-triangle-inequality, 
add_functionality_wrt_le, 
le_weakening, 
absval-diff-product-bound2, 
multiply_functionality_wrt_le, 
add_functionality_wrt_eq, 
multiply-is-int-iff, 
add-is-int-iff, 
false_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
lambdaFormation_alt, 
sqequalHypSubstitution, 
setElimination, 
thin, 
rename, 
extract_by_obid, 
isectElimination, 
multiplyEquality, 
hypothesisEquality, 
hypothesis, 
applyEquality, 
dependent_set_memberEquality_alt, 
dependent_functionElimination, 
natural_numberEquality, 
unionElimination, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation_alt, 
lambdaEquality_alt, 
int_eqEquality, 
isect_memberEquality_alt, 
voidElimination, 
sqequalRule, 
independent_pairFormation, 
universeIsType, 
because_Cache, 
inhabitedIsType, 
equalityTransitivity, 
equalitySymmetry, 
addEquality, 
instantiate, 
cumulativity, 
intEquality, 
equalityIstype, 
baseClosed, 
sqequalBase, 
imageElimination, 
imageMemberEquality, 
universeEquality, 
productElimination, 
functionIsTypeImplies, 
functionIsType, 
isectIsTypeImplies, 
applyLambdaEquality, 
closedConclusion, 
pointwiseFunctionality, 
promote_hyp, 
baseApply
Latex:
\mforall{}[x,y:\mBbbR{}].
    \mforall{}B,b:\mBbbN{}\msupplus{}.
        \mforall{}n,m:\{b...\}.    (|(m  *  (reg\_seq\_mul(x;y)  n))  -  n  *  (reg\_seq\_mul(x;y)  m)|  \mleq{}  ((2  *  B)  *  (n  +  m))) 
        supposing  \mforall{}n,m:\{b...\}.    ((2  *  ((m  *  |x  n|)  +  (n  *  |y  m|)))  \mleq{}  ((n  *  m)  *  ((4  *  B)  -  1)))
Date html generated:
2019_10_16-PM-03_06_11
Last ObjectModification:
2019_02_15-AM-10_33_27
Theory : reals
Home
Index