Nuprl Lemma : reg_seq_mul_wf

[x,y:ℕ+ ⟶ ℤ].  (reg_seq_mul(x;y) ∈ ℕ+ ⟶ ℤ)


Proof




Definitions occuring in Statement :  reg_seq_mul: reg_seq_mul(x;y) nat_plus: + uall: [x:A]. B[x] member: t ∈ T function: x:A ⟶ B[x] int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T reg_seq_mul: reg_seq_mul(x;y) nat_plus: + all: x:A. B[x] decidable: Dec(P) or: P ∨ Q uimplies: supposing a not: ¬A implies:  Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top and: P ∧ Q prop:
Lemmas referenced :  rounding-div_wf nat_plus_properties decidable__lt full-omega-unsat intformand_wf intformnot_wf intformless_wf itermConstant_wf itermMultiply_wf itermVar_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_mul_lemma int_term_value_var_lemma int_formula_prop_wf istype-less_than nat_plus_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalRule lambdaEquality_alt extract_by_obid sqequalHypSubstitution isectElimination thin multiplyEquality applyEquality hypothesisEquality dependent_set_memberEquality_alt natural_numberEquality setElimination rename hypothesis dependent_functionElimination unionElimination independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation_alt int_eqEquality isect_memberEquality_alt voidElimination independent_pairFormation universeIsType axiomEquality equalityTransitivity equalitySymmetry inhabitedIsType isectIsTypeImplies functionIsType

Latex:
\mforall{}[x,y:\mBbbN{}\msupplus{}  {}\mrightarrow{}  \mBbbZ{}].    (reg\_seq\_mul(x;y)  \mmember{}  \mBbbN{}\msupplus{}  {}\mrightarrow{}  \mBbbZ{})



Date html generated: 2019_10_16-PM-03_06_05
Last ObjectModification: 2019_02_15-AM-10_14_30

Theory : reals


Home Index