Nuprl Lemma : rounding-div_wf
∀[a:ℤ]. ∀[n:ℕ+].  ([a ÷ n] ∈ ℤ)
Proof
Definitions occuring in Statement : 
rounding-div: [b ÷ m]
, 
nat_plus: ℕ+
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
rounding-div: [b ÷ m]
, 
has-value: (a)↓
, 
uimplies: b supposing a
, 
nat_plus: ℕ+
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
subtype_rel: A ⊆r B
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
less_than: a < b
, 
and: P ∧ Q
, 
less_than': less_than'(a;b)
, 
true: True
, 
squash: ↓T
, 
top: Top
, 
bfalse: ff
Lemmas referenced : 
value-type-has-value, 
nat_plus_wf, 
set-value-type, 
less_than_wf, 
int-value-type, 
divrem-sq, 
nat_plus_inc_int_nzero, 
divide_wfa, 
remainder_wfa, 
lt_int_wf, 
istype-top, 
istype-void, 
subtract_wf, 
istype-int
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
callbyvalueReduce, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
independent_isectElimination, 
intEquality, 
Error :lambdaEquality_alt, 
natural_numberEquality, 
hypothesisEquality, 
Error :inhabitedIsType, 
because_Cache, 
applyEquality, 
independent_pairEquality, 
Error :lambdaFormation_alt, 
productElimination, 
multiplyEquality, 
closedConclusion, 
setElimination, 
rename, 
unionElimination, 
equalityElimination, 
lessCases, 
independent_pairFormation, 
baseClosed, 
equalityTransitivity, 
equalitySymmetry, 
imageMemberEquality, 
axiomSqEquality, 
Error :isect_memberEquality_alt, 
Error :isectIsTypeImplies, 
promote_hyp, 
voidElimination, 
minusEquality, 
addEquality, 
Error :equalityIstype, 
dependent_functionElimination, 
independent_functionElimination, 
axiomEquality, 
Error :universeIsType
Latex:
\mforall{}[a:\mBbbZ{}].  \mforall{}[n:\mBbbN{}\msupplus{}].    ([a  \mdiv{}  n]  \mmember{}  \mBbbZ{})
Date html generated:
2019_06_20-PM-01_13_28
Last ObjectModification:
2019_03_06-AM-10_51_34
Theory : int_2
Home
Index