Nuprl Lemma : rounding-div_wf

[a:ℤ]. ∀[n:ℕ+].  ([a ÷ n] ∈ ℤ)


Proof




Definitions occuring in Statement :  rounding-div: [b ÷ m] nat_plus: + uall: [x:A]. B[x] member: t ∈ T int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T rounding-div: [b ÷ m] has-value: (a)↓ uimplies: supposing a nat_plus: + so_lambda: λ2x.t[x] so_apply: x[s] subtype_rel: A ⊆B all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt less_than: a < b and: P ∧ Q less_than': less_than'(a;b) true: True squash: T top: Top bfalse: ff
Lemmas referenced :  value-type-has-value nat_plus_wf set-value-type less_than_wf int-value-type divrem-sq nat_plus_inc_int_nzero divide_wfa remainder_wfa lt_int_wf istype-top istype-void subtract_wf istype-int
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut sqequalRule callbyvalueReduce extract_by_obid sqequalHypSubstitution isectElimination thin hypothesis independent_isectElimination intEquality Error :lambdaEquality_alt,  natural_numberEquality hypothesisEquality Error :inhabitedIsType,  because_Cache applyEquality independent_pairEquality Error :lambdaFormation_alt,  productElimination multiplyEquality closedConclusion setElimination rename unionElimination equalityElimination lessCases independent_pairFormation baseClosed equalityTransitivity equalitySymmetry imageMemberEquality axiomSqEquality Error :isect_memberEquality_alt,  Error :isectIsTypeImplies,  promote_hyp voidElimination minusEquality addEquality Error :equalityIstype,  dependent_functionElimination independent_functionElimination axiomEquality Error :universeIsType

Latex:
\mforall{}[a:\mBbbZ{}].  \mforall{}[n:\mBbbN{}\msupplus{}].    ([a  \mdiv{}  n]  \mmember{}  \mBbbZ{})



Date html generated: 2019_06_20-PM-01_13_28
Last ObjectModification: 2019_03_06-AM-10_51_34

Theory : int_2


Home Index