Nuprl Lemma : divrem-sq
∀[a:ℤ]. ∀[n:ℤ-o].  (divrem(a; n) ~ <a ÷ n, a rem n>)
Proof
Definitions occuring in Statement : 
int_nzero: ℤ-o
, 
uall: ∀[x:A]. B[x]
, 
pair: <a, b>
, 
remainder: n rem m
, 
divide: n ÷ m
, 
divrem: divrem(n; m)
, 
int: ℤ
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
remainder: n rem m
, 
divide: n ÷ m
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
Lemmas referenced : 
divrem_wf, 
int_nzero_wf, 
istype-int
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
Error :inhabitedIsType, 
Error :lambdaFormation_alt, 
productElimination, 
sqequalRule, 
Error :equalityIstype, 
equalityTransitivity, 
equalitySymmetry, 
dependent_functionElimination, 
independent_functionElimination, 
axiomSqEquality, 
Error :universeIsType, 
Error :isect_memberEquality_alt, 
Error :isectIsTypeImplies
Latex:
\mforall{}[a:\mBbbZ{}].  \mforall{}[n:\mBbbZ{}\msupminus{}\msupzero{}].    (divrem(a;  n)  \msim{}  <a  \mdiv{}  n,  a  rem  n>)
Date html generated:
2019_06_20-AM-11_23_37
Last ObjectModification:
2019_03_06-AM-10_46_56
Theory : arithmetic
Home
Index