Nuprl Lemma : divrem-sq

[a:ℤ]. ∀[n:ℤ-o].  (divrem(a; n) ~ <a ÷ n, rem n>)


Proof




Definitions occuring in Statement :  int_nzero: -o uall: [x:A]. B[x] pair: <a, b> remainder: rem m divide: n ÷ m divrem: divrem(n; m) int: sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T remainder: rem m divide: n ÷ m all: x:A. B[x] implies:  Q
Lemmas referenced :  divrem_wf int_nzero_wf istype-int
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis Error :inhabitedIsType,  Error :lambdaFormation_alt,  productElimination sqequalRule Error :equalityIstype,  equalityTransitivity equalitySymmetry dependent_functionElimination independent_functionElimination axiomSqEquality Error :universeIsType,  Error :isect_memberEquality_alt,  Error :isectIsTypeImplies

Latex:
\mforall{}[a:\mBbbZ{}].  \mforall{}[n:\mBbbZ{}\msupminus{}\msupzero{}].    (divrem(a;  n)  \msim{}  <a  \mdiv{}  n,  a  rem  n>)



Date html generated: 2019_06_20-AM-11_23_37
Last ObjectModification: 2019_03_06-AM-10_46_56

Theory : arithmetic


Home Index