Nuprl Lemma : absval-diff-product-bound2
∀u,v,x,y:ℤ.  (|(u * v) - x * y| ≤ ((|u| * |v - y|) + (|y| * |u - x|)))
Proof
Definitions occuring in Statement : 
absval: |i|
, 
le: A ≤ B
, 
all: ∀x:A. B[x]
, 
multiply: n * m
, 
subtract: n - m
, 
add: n + m
, 
int: ℤ
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
squash: ↓T
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
nat: ℕ
, 
uimplies: b supposing a
, 
true: True
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
, 
top: Top
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
rev_uimplies: rev_uimplies(P;Q)
, 
ge: i ≥ j 
, 
subtract: n - m
Lemmas referenced : 
le_wf, 
squash_wf, 
true_wf, 
absval_wf, 
subtract_wf, 
add_functionality_wrt_eq, 
absval_mul, 
subtype_rel_self, 
iff_weakening_equal, 
istype-int, 
istype-void, 
decidable__le, 
full-omega-unsat, 
intformnot_wf, 
intformle_wf, 
itermVar_wf, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
le_functionality, 
le_weakening, 
int-triangle-inequality, 
mul-distributes, 
add-associates, 
minus-one-mul, 
mul-swap, 
mul-commutes, 
add-commutes, 
add-mul-special, 
zero-mul, 
zero-add
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :lambdaFormation_alt, 
cut, 
applyEquality, 
thin, 
Error :lambdaEquality_alt, 
sqequalHypSubstitution, 
imageElimination, 
introduction, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
equalityTransitivity, 
hypothesis, 
equalitySymmetry, 
Error :universeIsType, 
because_Cache, 
multiplyEquality, 
setElimination, 
rename, 
Error :inhabitedIsType, 
sqequalRule, 
independent_isectElimination, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
instantiate, 
universeEquality, 
productElimination, 
independent_functionElimination, 
addEquality, 
Error :isect_memberEquality_alt, 
voidElimination, 
minusEquality, 
dependent_functionElimination, 
unionElimination, 
approximateComputation, 
Error :dependent_pairFormation_alt, 
int_eqEquality
Latex:
\mforall{}u,v,x,y:\mBbbZ{}.    (|(u  *  v)  -  x  *  y|  \mleq{}  ((|u|  *  |v  -  y|)  +  (|y|  *  |u  -  x|)))
Date html generated:
2019_06_20-PM-01_13_48
Last ObjectModification:
2019_02_14-PM-00_03_12
Theory : int_2
Home
Index