Step
*
3
of Lemma
regularize-2-regular
1. f : ℤ ⟶ ℤ@i
2. n : ℕ+@i
3. ¬↑regular-upto(n;f)
4. m : ℕ+@i
5. ↑regular-upto(m;f)
6. v : ℕ@i
7. ¬↑regular-upto(v;f)@i
8. ∀[i:ℕ]. ¬¬↑regular-upto(i;f) supposing i < v@i
9. ¬(v = 1 ∈ ℤ)
10. ¬(v = 0 ∈ ℤ)
11. k : ℕ+@i
12. (v - 1) = k ∈ ℕ+@i
⊢ |(m * ((n * (f k)) ÷ k)) - n * (f m)| ≤ (4 * (n + m))
BY
{ (SwapVars `n' `m' THEN (RWO "absval-diff-symmetry" 0 THENA Auto) THEN (Subst' m + n ~ n + m 0 THENA Auto)) }
1
1. f : ℤ ⟶ ℤ@i
2. m : ℕ+@i
3. ¬↑regular-upto(m;f)
4. n : ℕ+@i
5. ↑regular-upto(n;f)
6. v : ℕ@i
7. ¬↑regular-upto(v;f)@i
8. ∀[i:ℕ]. ¬¬↑regular-upto(i;f) supposing i < v@i
9. ¬(v = 1 ∈ ℤ)
10. ¬(v = 0 ∈ ℤ)
11. k : ℕ+@i
12. (v - 1) = k ∈ ℕ+@i
⊢ |(m * (f n)) - n * ((m * (f k)) ÷ k)| ≤ (4 * (n + m))
Latex:
Latex:
1.  f  :  \mBbbZ{}  {}\mrightarrow{}  \mBbbZ{}@i
2.  n  :  \mBbbN{}\msupplus{}@i
3.  \mneg{}\muparrow{}regular-upto(n;f)
4.  m  :  \mBbbN{}\msupplus{}@i
5.  \muparrow{}regular-upto(m;f)
6.  v  :  \mBbbN{}@i
7.  \mneg{}\muparrow{}regular-upto(v;f)@i
8.  \mforall{}[i:\mBbbN{}].  \mneg{}\mneg{}\muparrow{}regular-upto(i;f)  supposing  i  <  v@i
9.  \mneg{}(v  =  1)
10.  \mneg{}(v  =  0)
11.  k  :  \mBbbN{}\msupplus{}@i
12.  (v  -  1)  =  k@i
\mvdash{}  |(m  *  ((n  *  (f  k))  \mdiv{}  k))  -  n  *  (f  m)|  \mleq{}  (4  *  (n  +  m))
By
Latex:
(SwapVars  `n'  `m'
  THEN  (RWO  "absval-diff-symmetry"  0  THENA  Auto)
  THEN  (Subst'  m  +  n  \msim{}  n  +  m  0  THENA  Auto))
Home
Index