Nuprl Lemma : regularize-2-regular

f:ℤ ⟶ ℤ2-regular-seq(regularize(f))


Proof




Definitions occuring in Statement :  regularize: regularize(f) regular-int-seq: k-regular-seq(f) all: x:A. B[x] function: x:A ⟶ B[x] natural_number: $n int:
Definitions unfolded in proof :  absval: |i| subtract: m true: True has-value: (a)↓ top: Top satisfiable_int_formula: satisfiable_int_formula(fmla) decidable: Dec(P) lelt: i ≤ j < k ge: i ≥  nat_plus: + int_seg: {i..j-} rev_implies:  Q iff: ⇐⇒ Q less_than': less_than'(a;b) le: A ≤ B nat: not: ¬A so_apply: x[s] so_lambda: λ2x.t[x] false: False assert: b bnot: ¬bb guard: {T} sq_type: SQType(T) or: P ∨ Q prop: exists: x:A. B[x] bfalse: ff ifthenelse: if then else fi  uimplies: supposing a and: P ∧ Q uiff: uiff(P;Q) btrue: tt it: unit: Unit bool: 𝔹 implies:  Q subtype_rel: A ⊆B uall: [x:A]. B[x] member: t ∈ T regularize: regularize(f) regular-int-seq: k-regular-seq(f) all: x:A. B[x] rev_uimplies: rev_uimplies(P;Q) squash: T less_than: a < b nequal: a ≠ b ∈  int_nzero: -o cand: c∧ B
Lemmas referenced :  absval-minus le_transitivity itermMinus_wf int_term_value_minus_lemma absval-diff-symmetry mul_preserves_le mul_bounds_1a mul-swap absval_pos decidable__assert all_wf rem_bounds_absval_le multiply_functionality_wrt_le int-triangle-inequality add_functionality_wrt_eq div_rem_sum2 subtype_rel_sets nequal_wf mul_cancel_in_le itermSubtract_wf int_term_value_subtract_lemma absval_unfold lt_int_wf assert_of_lt_int top_wf squash_wf true_wf absval_mul iff_weakening_equal le_weakening le_functionality itermMultiply_wf int_term_value_mul_lemma zero-mul add-mul-special one-mul mul-commutes mul-associates mul-distributes regular-upto_wf bool_wf eqtt_to_assert eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot mu-property bnot_wf nat_wf not_wf assert_wf assert_of_bnot exists_wf mu_wf less_than_wf int_subtype_base assert-regular-upto false_wf le_wf set_subtype_base int_seg_properties nat_properties nat_plus_properties decidable__equal_int satisfiable-full-omega-tt intformand_wf intformnot_wf intformeq_wf itermVar_wf itermConstant_wf intformless_wf itermAdd_wf intformle_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_less_lemma int_term_value_add_lemma int_formula_prop_le_lemma int_formula_prop_wf decidable__le decidable__lt lelt_wf int_seg_wf value-type-has-value int-value-type subtract_wf not-lt-2 not-equal-2 add_functionality_wrt_le add-associates add-zero zero-add le-add-cancel condition-implies-le add-commutes minus-add add-swap minus-zero le-add-cancel2 minus-minus minus-one-mul minus-one-mul-top and_wf uall_wf isect_wf nat_plus_subtype_nat nat_plus_wf absval_wf
Rules used in proof :  multiplyEquality functionEquality equalityEquality minusEquality callbyvalueReduce computeAll voidEquality isect_memberEquality int_eqEquality addEquality natural_numberEquality dependent_set_memberEquality intEquality levelHypothesis rename setElimination cumulativity isect_memberFormation uallFunctionality independent_pairFormation introduction existsFunctionality addLevel lambdaEquality voidElimination independent_functionElimination instantiate dependent_functionElimination promote_hyp dependent_pairFormation independent_isectElimination productElimination equalitySymmetry equalityTransitivity equalityElimination unionElimination hypothesis because_Cache applyEquality hypothesisEquality thin isectElimination sqequalHypSubstitution lemma_by_obid cut sqequalRule lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution universeEquality imageElimination baseClosed imageMemberEquality sqequalAxiom lessCases setEquality divideEquality remainderEquality impliesFunctionality

Latex:
\mforall{}f:\mBbbZ{}  {}\mrightarrow{}  \mBbbZ{}.  2-regular-seq(regularize(f))



Date html generated: 2016_05_18-AM-10_51_02
Last ObjectModification: 2016_01_17-AM-00_19_19

Theory : reals


Home Index