Nuprl Lemma : regularize-2-regular
∀f:ℤ ⟶ ℤ. 2-regular-seq(regularize(f))
Proof
Definitions occuring in Statement : 
regularize: regularize(f)
, 
regular-int-seq: k-regular-seq(f)
, 
all: ∀x:A. B[x]
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
, 
int: ℤ
Definitions unfolded in proof : 
absval: |i|
, 
subtract: n - m
, 
true: True
, 
has-value: (a)↓
, 
top: Top
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
decidable: Dec(P)
, 
lelt: i ≤ j < k
, 
ge: i ≥ j 
, 
nat_plus: ℕ+
, 
int_seg: {i..j-}
, 
rev_implies: P 
⇐ Q
, 
iff: P 
⇐⇒ Q
, 
less_than': less_than'(a;b)
, 
le: A ≤ B
, 
nat: ℕ
, 
not: ¬A
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
false: False
, 
assert: ↑b
, 
bnot: ¬bb
, 
guard: {T}
, 
sq_type: SQType(T)
, 
or: P ∨ Q
, 
prop: ℙ
, 
exists: ∃x:A. B[x]
, 
bfalse: ff
, 
ifthenelse: if b then t else f fi 
, 
uimplies: b supposing a
, 
and: P ∧ Q
, 
uiff: uiff(P;Q)
, 
btrue: tt
, 
it: ⋅
, 
unit: Unit
, 
bool: 𝔹
, 
implies: P 
⇒ Q
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
regularize: regularize(f)
, 
regular-int-seq: k-regular-seq(f)
, 
all: ∀x:A. B[x]
, 
rev_uimplies: rev_uimplies(P;Q)
, 
squash: ↓T
, 
less_than: a < b
, 
nequal: a ≠ b ∈ T 
, 
int_nzero: ℤ-o
, 
cand: A c∧ B
Lemmas referenced : 
absval-minus, 
le_transitivity, 
itermMinus_wf, 
int_term_value_minus_lemma, 
absval-diff-symmetry, 
mul_preserves_le, 
mul_bounds_1a, 
mul-swap, 
absval_pos, 
decidable__assert, 
all_wf, 
rem_bounds_absval_le, 
multiply_functionality_wrt_le, 
int-triangle-inequality, 
add_functionality_wrt_eq, 
div_rem_sum2, 
subtype_rel_sets, 
nequal_wf, 
mul_cancel_in_le, 
itermSubtract_wf, 
int_term_value_subtract_lemma, 
absval_unfold, 
lt_int_wf, 
assert_of_lt_int, 
top_wf, 
squash_wf, 
true_wf, 
absval_mul, 
iff_weakening_equal, 
le_weakening, 
le_functionality, 
itermMultiply_wf, 
int_term_value_mul_lemma, 
zero-mul, 
add-mul-special, 
one-mul, 
mul-commutes, 
mul-associates, 
mul-distributes, 
regular-upto_wf, 
bool_wf, 
eqtt_to_assert, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
mu-property, 
bnot_wf, 
nat_wf, 
not_wf, 
assert_wf, 
assert_of_bnot, 
exists_wf, 
mu_wf, 
less_than_wf, 
int_subtype_base, 
assert-regular-upto, 
false_wf, 
le_wf, 
set_subtype_base, 
int_seg_properties, 
nat_properties, 
nat_plus_properties, 
decidable__equal_int, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformeq_wf, 
itermVar_wf, 
itermConstant_wf, 
intformless_wf, 
itermAdd_wf, 
intformle_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_less_lemma, 
int_term_value_add_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_wf, 
decidable__le, 
decidable__lt, 
lelt_wf, 
int_seg_wf, 
value-type-has-value, 
int-value-type, 
subtract_wf, 
not-lt-2, 
not-equal-2, 
add_functionality_wrt_le, 
add-associates, 
add-zero, 
zero-add, 
le-add-cancel, 
condition-implies-le, 
add-commutes, 
minus-add, 
add-swap, 
minus-zero, 
le-add-cancel2, 
minus-minus, 
minus-one-mul, 
minus-one-mul-top, 
and_wf, 
uall_wf, 
isect_wf, 
nat_plus_subtype_nat, 
nat_plus_wf, 
absval_wf
Rules used in proof : 
multiplyEquality, 
functionEquality, 
equalityEquality, 
minusEquality, 
callbyvalueReduce, 
computeAll, 
voidEquality, 
isect_memberEquality, 
int_eqEquality, 
addEquality, 
natural_numberEquality, 
dependent_set_memberEquality, 
intEquality, 
levelHypothesis, 
rename, 
setElimination, 
cumulativity, 
isect_memberFormation, 
uallFunctionality, 
independent_pairFormation, 
introduction, 
existsFunctionality, 
addLevel, 
lambdaEquality, 
voidElimination, 
independent_functionElimination, 
instantiate, 
dependent_functionElimination, 
promote_hyp, 
dependent_pairFormation, 
independent_isectElimination, 
productElimination, 
equalitySymmetry, 
equalityTransitivity, 
equalityElimination, 
unionElimination, 
hypothesis, 
because_Cache, 
applyEquality, 
hypothesisEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
lemma_by_obid, 
cut, 
sqequalRule, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
universeEquality, 
imageElimination, 
baseClosed, 
imageMemberEquality, 
sqequalAxiom, 
lessCases, 
setEquality, 
divideEquality, 
remainderEquality, 
impliesFunctionality
Latex:
\mforall{}f:\mBbbZ{}  {}\mrightarrow{}  \mBbbZ{}.  2-regular-seq(regularize(f))
Date html generated:
2016_05_18-AM-10_51_02
Last ObjectModification:
2016_01_17-AM-00_19_19
Theory : reals
Home
Index