Nuprl Lemma : assert-regular-upto
∀[k,n:ℕ]. ∀[f:ℕ+ ⟶ ℤ].  (↑regular-upto(k;n;f) 
⇐⇒ ∀i,j:ℕ+n + 1.  (|(i * (f j)) - j * (f i)| ≤ ((2 * k) * (i + j))))
Proof
Definitions occuring in Statement : 
regular-upto: regular-upto(k;n;f)
, 
absval: |i|
, 
int_seg: {i..j-}
, 
nat_plus: ℕ+
, 
nat: ℕ
, 
assert: ↑b
, 
uall: ∀[x:A]. B[x]
, 
le: A ≤ B
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
multiply: n * m
, 
subtract: n - m
, 
add: n + m
, 
natural_number: $n
, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
nat: ℕ
, 
prop: ℙ
, 
rev_implies: P 
⇐ Q
, 
so_lambda: λ2x.t[x]
, 
int_seg: {i..j-}
, 
nat_plus: ℕ+
, 
le: A ≤ B
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
not: ¬A
, 
false: False
, 
uiff: uiff(P;Q)
, 
uimplies: b supposing a
, 
lelt: i ≤ j < k
, 
subtype_rel: A ⊆r B
, 
less_than': less_than'(a;b)
, 
true: True
, 
so_apply: x[s]
, 
regular-upto: regular-upto(k;n;f)
, 
subtract: n - m
, 
top: Top
, 
guard: {T}
, 
ge: i ≥ j 
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
sq_type: SQType(T)
, 
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced : 
int_seg_wf, 
assert_wf, 
regular-upto_wf, 
nat_plus_wf, 
all_wf, 
le_wf, 
absval_wf, 
subtract_wf, 
decidable__lt, 
false_wf, 
not-lt-2, 
add_functionality_wrt_le, 
add-commutes, 
zero-add, 
le-add-cancel, 
less_than_wf, 
less_than'_wf, 
assert_witness, 
nat_wf, 
assert-bdd-all, 
bdd-all_wf, 
le_int_wf, 
condition-implies-le, 
minus-add, 
minus-one-mul, 
minus-one-mul-top, 
add-associates, 
add-zero, 
int_seg_properties, 
nat_properties, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermSubtract_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_subtract_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
intformless_wf, 
itermAdd_wf, 
int_formula_prop_less_lemma, 
int_term_value_add_lemma, 
lelt_wf, 
assert_of_le_int, 
minus-minus, 
add-swap, 
multiply-is-int-iff, 
set_subtype_base, 
int_subtype_base, 
add-is-int-iff, 
subtype_base_sq, 
int_seg_subtype_nat_plus, 
and_wf, 
equal_wf, 
add-member-int_seg2, 
add-subtract-cancel
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
independent_pairFormation, 
lambdaFormation, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
natural_numberEquality, 
addEquality, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
functionExtensionality, 
applyEquality, 
because_Cache, 
sqequalRule, 
lambdaEquality, 
multiplyEquality, 
dependent_set_memberEquality, 
productElimination, 
dependent_functionElimination, 
unionElimination, 
voidElimination, 
independent_functionElimination, 
independent_isectElimination, 
independent_pairEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
functionEquality, 
intEquality, 
isect_memberEquality, 
addLevel, 
voidEquality, 
minusEquality, 
allFunctionality, 
levelHypothesis, 
promote_hyp, 
approximateComputation, 
dependent_pairFormation, 
int_eqEquality, 
hyp_replacement, 
baseApply, 
closedConclusion, 
baseClosed, 
instantiate, 
cumulativity, 
applyLambdaEquality, 
allLevelFunctionality
Latex:
\mforall{}[k,n:\mBbbN{}].  \mforall{}[f:\mBbbN{}\msupplus{}  {}\mrightarrow{}  \mBbbZ{}].
    (\muparrow{}regular-upto(k;n;f)  \mLeftarrow{}{}\mRightarrow{}  \mforall{}i,j:\mBbbN{}\msupplus{}n  +  1.    (|(i  *  (f  j))  -  j  *  (f  i)|  \mleq{}  ((2  *  k)  *  (i  +  j))))
Date html generated:
2017_10_03-AM-08_42_39
Last ObjectModification:
2017_09_06-PM-04_04_24
Theory : reals
Home
Index