Step
*
of Lemma
assert-regular-upto
∀[k,n:ℕ]. ∀[f:ℕ+ ⟶ ℤ]. (↑regular-upto(k;n;f)
⇐⇒ ∀i,j:ℕ+n + 1. (|(i * (f j)) - j * (f i)| ≤ ((2 * k) * (i + j))))
BY
{ Auto }
1
1. k : ℕ
2. n : ℕ
3. f : ℕ+ ⟶ ℤ
4. ↑regular-upto(k;n;f)
5. i : ℕ+n + 1
6. j : ℕ+n + 1
⊢ |(i * (f j)) - j * (f i)| ≤ ((2 * k) * (i + j))
2
1. k : ℕ
2. n : ℕ
3. f : ℕ+ ⟶ ℤ
4. ∀i,j:ℕ+n + 1. (|(i * (f j)) - j * (f i)| ≤ ((2 * k) * (i + j)))
⊢ ↑regular-upto(k;n;f)
Latex:
Latex:
\mforall{}[k,n:\mBbbN{}]. \mforall{}[f:\mBbbN{}\msupplus{} {}\mrightarrow{} \mBbbZ{}].
(\muparrow{}regular-upto(k;n;f) \mLeftarrow{}{}\mRightarrow{} \mforall{}i,j:\mBbbN{}\msupplus{}n + 1. (|(i * (f j)) - j * (f i)| \mleq{} ((2 * k) * (i + j))))
By
Latex:
Auto
Home
Index