Step
*
1
1
1
of Lemma
rinv-positive
1. x : ℝ
2. r0 < x
3. ∃m:{1...}. (↑((λn.eval k = x n in 4 <z |k|) m))
4. a : ℕ+
5. 4 < |x a|
6. ∀m:ℕ+. ((a ≤ m)
⇒ (m ≤ (a * |x m|)))
7. ∀[i:ℕ+a]. (|x i| ≤ 4)
8. a = 1 ∈ ℤ
9. reg-seq-inv(x) ∈ {f:ℕ+ ⟶ ℤ| 1 * ((2 * 2) + 1)-regular-seq(f)}
⊢ rpositive2(reg-seq-inv(x))
BY
{ RepUR ``rpositive2 reg-seq-inv`` 0 }
1
1. x : ℝ
2. r0 < x
3. ∃m:{1...}. (↑((λn.eval k = x n in 4 <z |k|) m))
4. a : ℕ+
5. 4 < |x a|
6. ∀m:ℕ+. ((a ≤ m)
⇒ (m ≤ (a * |x m|)))
7. ∀[i:ℕ+a]. (|x i| ≤ 4)
8. a = 1 ∈ ℤ
9. reg-seq-inv(x) ∈ {f:ℕ+ ⟶ ℤ| 1 * ((2 * 2) + 1)-regular-seq(f)}
⊢ ∃n:ℕ+. ∀m:ℕ+. ((n ≤ m)
⇒ (m ≤ (n * ((4 * m * m) ÷ x m))))
Latex:
Latex:
1. x : \mBbbR{}
2. r0 < x
3. \mexists{}m:\{1...\}. (\muparrow{}((\mlambda{}n.eval k = x n in 4 <z |k|) m))
4. a : \mBbbN{}\msupplus{}
5. 4 < |x a|
6. \mforall{}m:\mBbbN{}\msupplus{}. ((a \mleq{} m) {}\mRightarrow{} (m \mleq{} (a * |x m|)))
7. \mforall{}[i:\mBbbN{}\msupplus{}a]. (|x i| \mleq{} 4)
8. a = 1
9. reg-seq-inv(x) \mmember{} \{f:\mBbbN{}\msupplus{} {}\mrightarrow{} \mBbbZ{}| 1 * ((2 * 2) + 1)-regular-seq(f)\}
\mvdash{} rpositive2(reg-seq-inv(x))
By
Latex:
RepUR ``rpositive2 reg-seq-inv`` 0
Home
Index