Nuprl Lemma : rless-iff2-ext

x,y:ℝ.  (x < ⇐⇒ ∃n:ℕ+(x n) 4 < n)


Proof




Definitions occuring in Statement :  rless: x < y real: nat_plus: + less_than: a < b all: x:A. B[x] exists: x:A. B[x] iff: ⇐⇒ Q apply: a add: m natural_number: $n
Definitions unfolded in proof :  member: t ∈ T pi1: fst(t) rless-iff2
Lemmas referenced :  rless-iff2
Rules used in proof :  introduction sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity cut instantiate extract_by_obid hypothesis sqequalRule thin sqequalHypSubstitution equalityTransitivity equalitySymmetry

Latex:
\mforall{}x,y:\mBbbR{}.    (x  <  y  \mLeftarrow{}{}\mRightarrow{}  \mexists{}n:\mBbbN{}\msupplus{}.  (x  n)  +  4  <  y  n)



Date html generated: 2018_05_22-PM-01_21_12
Last ObjectModification: 2018_05_17-AM-09_19_35

Theory : reals


Home Index