Nuprl Lemma : rless-iff2-ext
∀x,y:ℝ. (x < y
⇐⇒ ∃n:ℕ+. (x n) + 4 < y n)
Proof
Definitions occuring in Statement :
rless: x < y
,
real: ℝ
,
nat_plus: ℕ+
,
less_than: a < b
,
all: ∀x:A. B[x]
,
exists: ∃x:A. B[x]
,
iff: P
⇐⇒ Q
,
apply: f a
,
add: n + m
,
natural_number: $n
Definitions unfolded in proof :
member: t ∈ T
,
pi1: fst(t)
,
rless-iff2
Lemmas referenced :
rless-iff2
Rules used in proof :
introduction,
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
cut,
instantiate,
extract_by_obid,
hypothesis,
sqequalRule,
thin,
sqequalHypSubstitution,
equalityTransitivity,
equalitySymmetry
Latex:
\mforall{}x,y:\mBbbR{}. (x < y \mLeftarrow{}{}\mRightarrow{} \mexists{}n:\mBbbN{}\msupplus{}. (x n) + 4 < y n)
Date html generated:
2018_05_22-PM-01_21_12
Last ObjectModification:
2018_05_17-AM-09_19_35
Theory : reals
Home
Index