Nuprl Lemma : rless-iff2-ext
∀x,y:ℝ.  (x < y ⇐⇒ ∃n:ℕ+. (x n) + 4 < y n)
Proof
Definitions occuring in Statement : 
rless: x < y, 
real: ℝ, 
nat_plus: ℕ+, 
less_than: a < b, 
all: ∀x:A. B[x], 
exists: ∃x:A. B[x], 
iff: P ⇐⇒ Q, 
apply: f a, 
add: n + m, 
natural_number: $n
Definitions unfolded in proof : 
member: t ∈ T, 
pi1: fst(t), 
rless-iff2
Lemmas referenced : 
rless-iff2
Rules used in proof : 
introduction, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
cut, 
instantiate, 
extract_by_obid, 
hypothesis, 
sqequalRule, 
thin, 
sqequalHypSubstitution, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}x,y:\mBbbR{}.    (x  <  y  \mLeftarrow{}{}\mRightarrow{}  \mexists{}n:\mBbbN{}\msupplus{}.  (x  n)  +  4  <  y  n)
Date html generated:
2018_05_22-PM-01_21_12
Last ObjectModification:
2018_05_17-AM-09_19_35
Theory : reals
Home
Index