Nuprl Lemma : rless-iff2-ext
∀x,y:ℝ.  (x < y 
⇐⇒ ∃n:ℕ+. (x n) + 4 < y n)
Proof
Definitions occuring in Statement : 
rless: x < y
, 
real: ℝ
, 
nat_plus: ℕ+
, 
less_than: a < b
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
apply: f a
, 
add: n + m
, 
natural_number: $n
Definitions unfolded in proof : 
member: t ∈ T
, 
pi1: fst(t)
, 
rless-iff2
Lemmas referenced : 
rless-iff2
Rules used in proof : 
introduction, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
cut, 
instantiate, 
extract_by_obid, 
hypothesis, 
sqequalRule, 
thin, 
sqequalHypSubstitution, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}x,y:\mBbbR{}.    (x  <  y  \mLeftarrow{}{}\mRightarrow{}  \mexists{}n:\mBbbN{}\msupplus{}.  (x  n)  +  4  <  y  n)
Date html generated:
2018_05_22-PM-01_21_12
Last ObjectModification:
2018_05_17-AM-09_19_35
Theory : reals
Home
Index