Step
*
1
2
1
1
1
of Lemma
rmin-rnexp
1. x : ℝ
2. y : ℝ
3. r0 ≤ x
4. r0 ≤ y
5. n : ℤ
6. n ≠ 1
7. n ≠ 0
8. 0 < n
9. rmin(x^n - 1;y^n - 1) ≤ rmin(x;y)^n - 1
10. rmin(x^n - 1 * x;y^n - 1 * y) ≤ (x^n - 1 * x)
11. (x^n - 1 * y) < (x^n - 1 * x)
12. (x^n - 1 * y) < (y^n - 1 * y)
⊢ False
BY
{ (Assert x ≤ y BY
(BLemma `not-rless`
THEN Auto
THEN (D 0 THENA Auto)
THEN (Assert y^n - 1 ≤ x^n - 1 BY
EAuto 1)
THEN nRMul ⌜y⌝ (-1)⋅
THEN Auto)) }
1
1. x : ℝ
2. y : ℝ
3. r0 ≤ x
4. r0 ≤ y
5. n : ℤ
6. n ≠ 1
7. n ≠ 0
8. 0 < n
9. rmin(x^n - 1;y^n - 1) ≤ rmin(x;y)^n - 1
10. rmin(x^n - 1 * x;y^n - 1 * y) ≤ (x^n - 1 * x)
11. (x^n - 1 * y) < (x^n - 1 * x)
12. (x^n - 1 * y) < (y^n - 1 * y)
13. x ≤ y
⊢ False
Latex:
Latex:
1. x : \mBbbR{}
2. y : \mBbbR{}
3. r0 \mleq{} x
4. r0 \mleq{} y
5. n : \mBbbZ{}
6. n \mneq{} 1
7. n \mneq{} 0
8. 0 < n
9. rmin(x\^{}n - 1;y\^{}n - 1) \mleq{} rmin(x;y)\^{}n - 1
10. rmin(x\^{}n - 1 * x;y\^{}n - 1 * y) \mleq{} (x\^{}n - 1 * x)
11. (x\^{}n - 1 * y) < (x\^{}n - 1 * x)
12. (x\^{}n - 1 * y) < (y\^{}n - 1 * y)
\mvdash{} False
By
Latex:
(Assert x \mleq{} y BY
(BLemma `not-rless`
THEN Auto
THEN (D 0 THENA Auto)
THEN (Assert y\^{}n - 1 \mleq{} x\^{}n - 1 BY
EAuto 1)
THEN nRMul \mkleeneopen{}y\mkleeneclose{} (-1)\mcdot{}
THEN Auto))
Home
Index