Step
*
1
2
of Lemma
rminimum-select
.....upcase.....
1. n : ℤ
2. d : ℤ
3. [%1] : 0 < d
4. ∀x:{n..(n + (d - 1)) + 1-} ⟶ ℝ. ∀e:ℝ.
((r0 < e)
⇒ (∃i:{n..(n + (d - 1)) + 1-}. (x[i] < (primrec(d - 1;x[n];λi,s. rmin(s;x[n + i + 1])) + e))))
⊢ ∀x:{n..(n + d) + 1-} ⟶ ℝ. ∀e:ℝ.
((r0 < e)
⇒ (∃i:{n..(n + d) + 1-}. (x[i] < (primrec(d;x[n];λi,s. rmin(s;x[n + i + 1])) + e))))
BY
{ ((RWO "primrec-unroll" 0 THENA Auto) THEN OldAutoBoolCase ⌜d <z 1⌝⋅ THEN (ParallelOp (-2) THEN Auto)⋅)⋅ }
1
1. n : ℤ
2. d : ℤ
3. [%1] : 0 < d
4. ∀x:{n..(n + (d - 1)) + 1-} ⟶ ℝ. ∀e:ℝ.
((r0 < e)
⇒ (∃i:{n..(n + (d - 1)) + 1-}. (x[i] < (primrec(d - 1;x[n];λi,s. rmin(s;x[n + i + 1])) + e))))
5. 1 ≤ d
6. x : {n..(n + d) + 1-} ⟶ ℝ
7. ∀e:ℝ. ((r0 < e)
⇒ (∃i:{n..(n + (d - 1)) + 1-}. (x[i] < (primrec(d - 1;x[n];λi,s. rmin(s;x[n + i + 1])) + e))))
8. e : ℝ
9. r0 < e
⊢ ∃i:{n..(n + d) + 1-}. (x[i] < (rmin(primrec(d - 1;x[n];λi,s. rmin(s;x[n + i + 1]));x[n + (d - 1) + 1]) + e))
Latex:
Latex:
.....upcase.....
1. n : \mBbbZ{}
2. d : \mBbbZ{}
3. [\%1] : 0 < d
4. \mforall{}x:\{n..(n + (d - 1)) + 1\msupminus{}\} {}\mrightarrow{} \mBbbR{}. \mforall{}e:\mBbbR{}.
((r0 < e)
{}\mRightarrow{} (\mexists{}i:\{n..(n + (d - 1)) + 1\msupminus{}\}. (x[i] < (primrec(d - 1;x[n];\mlambda{}i,s. rmin(s;x[n + i + 1])) + e))))
\mvdash{} \mforall{}x:\{n..(n + d) + 1\msupminus{}\} {}\mrightarrow{} \mBbbR{}. \mforall{}e:\mBbbR{}.
((r0 < e) {}\mRightarrow{} (\mexists{}i:\{n..(n + d) + 1\msupminus{}\}. (x[i] < (primrec(d;x[n];\mlambda{}i,s. rmin(s;x[n + i + 1])) + e))))
By
Latex:
((RWO "primrec-unroll" 0 THENA Auto)
THEN OldAutoBoolCase \mkleeneopen{}d <z 1\mkleeneclose{}\mcdot{}
THEN (ParallelOp (-2) THEN Auto)\mcdot{})\mcdot{}
Home
Index