Step
*
of Lemma
rneq-if-rabs
∀x,y:ℝ. x ≠ y supposing r0 < |x - y|
BY
{ TACTIC:(Auto
THEN (Assert ∃n:ℕ+. 4 < |x - y| n BY
((D 0 With ⌜rlessw(r0;|x - y|)⌝ THEN Auto)
THEN (GenConclTerm ⌜rlessw(r0;|x - y|)⌝⋅ THENA Auto)
THEN Thin (-1)
THEN D -1
THEN RepUR ``int-to-real`` -1
THEN Auto))
THEN Thin (-2)
THEN ExRepD) }
1
1. x : ℝ
2. y : ℝ
3. n : ℕ+
4. 4 < |x - y| n
⊢ x ≠ y
Latex:
Latex:
\mforall{}x,y:\mBbbR{}. x \mneq{} y supposing r0 < |x - y|
By
Latex:
TACTIC:(Auto
THEN (Assert \mexists{}n:\mBbbN{}\msupplus{}. 4 < |x - y| n BY
((D 0 With \mkleeneopen{}rlessw(r0;|x - y|)\mkleeneclose{} THEN Auto)
THEN (GenConclTerm \mkleeneopen{}rlessw(r0;|x - y|)\mkleeneclose{}\mcdot{} THENA Auto)
THEN Thin (-1)
THEN D -1
THEN RepUR ``int-to-real`` -1
THEN Auto))
THEN Thin (-2)
THEN ExRepD)
Home
Index