Nuprl Lemma : rneq-if-rabs
∀x,y:ℝ.  x ≠ y supposing r0 < |x - y|
Proof
Definitions occuring in Statement : 
rneq: x ≠ y, 
rless: x < y, 
rabs: |x|, 
rsub: x - y, 
int-to-real: r(n), 
real: ℝ, 
uimplies: b supposing a, 
all: ∀x:A. B[x], 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
uimplies: b supposing a, 
exists: ∃x:A. B[x], 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
subtype_rel: A ⊆r B, 
rless: x < y, 
sq_exists: ∃x:A [B[x]], 
implies: P ⇒ Q, 
int-to-real: r(n), 
nat_plus: ℕ+, 
decidable: Dec(P), 
or: P ∨ Q, 
less_than: a < b, 
squash: ↓T, 
and: P ∧ Q, 
not: ¬A, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
false: False, 
top: Top, 
real: ℝ, 
has-value: (a)↓, 
rsub: x - y, 
rmax: rmax(x;y), 
rminus: -(x), 
true: True, 
nequal: a ≠ b ∈ T , 
sq_type: SQType(T), 
guard: {T}, 
iff: P ⇐⇒ Q, 
less_than': less_than'(a;b), 
rneq: x ≠ y, 
uiff: uiff(P;Q), 
int_nzero: ℤ-o, 
absval: |i|, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
bfalse: ff, 
bnot: ¬bb, 
ifthenelse: if b then t else f fi , 
assert: ↑b, 
rev_implies: P ⇐ Q, 
nat: ℕ, 
ge: i ≥ j 
Lemmas referenced : 
rlessw_wf, 
int-to-real_wf, 
rabs_wf, 
rsub_wf, 
rless_wf, 
nat_plus_properties, 
decidable__lt, 
istype-less_than, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformless_wf, 
itermConstant_wf, 
itermVar_wf, 
itermAdd_wf, 
itermMultiply_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_not_lemma, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_term_value_add_lemma, 
int_term_value_mul_lemma, 
int_formula_prop_wf, 
real_wf, 
value-type-has-value, 
int-value-type, 
rabs-as-rmax, 
rminus_wf, 
imax_strict_ub, 
mul_nat_plus, 
subtype_base_sq, 
int_subtype_base, 
istype-top, 
less_than_wf, 
add-is-int-iff, 
minus-is-int-iff, 
itermMinus_wf, 
int_term_value_minus_lemma, 
false_wf, 
radd-approx, 
div_rem_sum, 
nequal_wf, 
rem_bounds_absval, 
lt_int_wf, 
eqtt_to_assert, 
assert_of_lt_int, 
decidable__equal_int, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
eqff_to_assert, 
bool_subtype_base, 
bool_cases_sqequal, 
bool_wf, 
assert-bnot, 
iff_weakening_uiff, 
assert_wf, 
absval_unfold2, 
absval_wf, 
nat_properties, 
multiply-is-int-iff, 
intformle_wf, 
intformor_wf, 
int_formula_prop_le_lemma, 
int_formula_prop_or_lemma
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
isect_memberFormation_alt, 
cut, 
dependent_pairFormation_alt, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
isectElimination, 
natural_numberEquality, 
hypothesis, 
dependent_set_memberEquality_alt, 
hypothesisEquality, 
universeIsType, 
applyEquality, 
lambdaEquality_alt, 
setElimination, 
rename, 
because_Cache, 
sqequalRule, 
inhabitedIsType, 
unionElimination, 
imageElimination, 
productElimination, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
int_eqEquality, 
isect_memberEquality_alt, 
voidElimination, 
independent_pairFormation, 
equalityIsType1, 
equalityTransitivity, 
equalitySymmetry, 
callbyvalueReduce, 
intEquality, 
multiplyEquality, 
divideEquality, 
addEquality, 
minusEquality, 
instantiate, 
cumulativity, 
equalityIsType4, 
baseClosed, 
lessCases, 
axiomSqEquality, 
isectIsTypeImplies, 
imageMemberEquality, 
inlEquality_alt, 
inrEquality_alt, 
applyLambdaEquality, 
closedConclusion, 
pointwiseFunctionality, 
promote_hyp, 
baseApply, 
unionIsType, 
remainderEquality, 
equalityElimination, 
inlFormation_alt, 
inrFormation_alt, 
functionIsType
Latex:
\mforall{}x,y:\mBbbR{}.    x  \mneq{}  y  supposing  r0  <  |x  -  y|
Date html generated:
2019_10_29-AM-09_39_21
Last ObjectModification:
2018_11_11-PM-11_11_25
Theory : reals
Home
Index