Nuprl Lemma : rneq-if-rabs

x,y:ℝ.  x ≠ supposing r0 < |x y|


Proof




Definitions occuring in Statement :  rneq: x ≠ y rless: x < y rabs: |x| rsub: y int-to-real: r(n) real: uimplies: supposing a all: x:A. B[x] natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] uimplies: supposing a exists: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] prop: subtype_rel: A ⊆B rless: x < y sq_exists: x:A [B[x]] implies:  Q int-to-real: r(n) nat_plus: + decidable: Dec(P) or: P ∨ Q less_than: a < b squash: T and: P ∧ Q not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) false: False top: Top real: has-value: (a)↓ rsub: y rmax: rmax(x;y) rminus: -(x) true: True nequal: a ≠ b ∈  sq_type: SQType(T) guard: {T} iff: ⇐⇒ Q less_than': less_than'(a;b) rneq: x ≠ y uiff: uiff(P;Q) int_nzero: -o absval: |i| bool: 𝔹 unit: Unit it: btrue: tt bfalse: ff bnot: ¬bb ifthenelse: if then else fi  assert: b rev_implies:  Q nat: ge: i ≥ 
Lemmas referenced :  rlessw_wf int-to-real_wf rabs_wf rsub_wf rless_wf nat_plus_properties decidable__lt istype-less_than full-omega-unsat intformand_wf intformnot_wf intformless_wf itermConstant_wf itermVar_wf itermAdd_wf itermMultiply_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_var_lemma int_term_value_add_lemma int_term_value_mul_lemma int_formula_prop_wf real_wf value-type-has-value int-value-type rabs-as-rmax rminus_wf imax_strict_ub mul_nat_plus subtype_base_sq int_subtype_base istype-top less_than_wf add-is-int-iff minus-is-int-iff itermMinus_wf int_term_value_minus_lemma false_wf radd-approx div_rem_sum nequal_wf rem_bounds_absval lt_int_wf eqtt_to_assert assert_of_lt_int decidable__equal_int intformeq_wf int_formula_prop_eq_lemma eqff_to_assert bool_subtype_base bool_cases_sqequal bool_wf assert-bnot iff_weakening_uiff assert_wf absval_unfold2 absval_wf nat_properties multiply-is-int-iff intformle_wf intformor_wf int_formula_prop_le_lemma int_formula_prop_or_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt isect_memberFormation_alt cut dependent_pairFormation_alt introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin isectElimination natural_numberEquality hypothesis dependent_set_memberEquality_alt hypothesisEquality universeIsType applyEquality lambdaEquality_alt setElimination rename because_Cache sqequalRule inhabitedIsType unionElimination imageElimination productElimination independent_isectElimination approximateComputation independent_functionElimination int_eqEquality isect_memberEquality_alt voidElimination independent_pairFormation equalityIsType1 equalityTransitivity equalitySymmetry callbyvalueReduce intEquality multiplyEquality divideEquality addEquality minusEquality instantiate cumulativity equalityIsType4 baseClosed lessCases axiomSqEquality isectIsTypeImplies imageMemberEquality inlEquality_alt inrEquality_alt applyLambdaEquality closedConclusion pointwiseFunctionality promote_hyp baseApply unionIsType remainderEquality equalityElimination inlFormation_alt inrFormation_alt functionIsType

Latex:
\mforall{}x,y:\mBbbR{}.    x  \mneq{}  y  supposing  r0  <  |x  -  y|



Date html generated: 2019_10_29-AM-09_39_21
Last ObjectModification: 2018_11_11-PM-11_11_25

Theory : reals


Home Index