Step
*
of Lemma
rnexp-convex3
∀a,b:ℝ. ((((r0 ≤ a) ∧ (r0 ≤ b)) ∨ ((a ≤ r0) ∧ (b ≤ r0)))
⇒ (∀n:ℕ+. (|a - b|^n ≤ |a^n - b^n|)))
BY
{ (Auto
THEN D -2
THEN Auto
THEN Try (Complete ((BLemma `rnexp-convex2` THEN Auto)))
THEN (InstLemma `rnexp-convex2` [⌜-(a)⌝;⌜-(b)⌝;⌜n⌝]⋅ THENA (Auto THEN nRMul ⌜r(-1)⌝ 0⋅ THEN Auto))) }
1
1. a : ℝ
2. b : ℝ
3. a ≤ r0
4. b ≤ r0
5. n : ℕ+
6. |-(a) - -(b)|^n ≤ |-(a)^n - -(b)^n|
⊢ |a - b|^n ≤ |a^n - b^n|
Latex:
Latex:
\mforall{}a,b:\mBbbR{}. ((((r0 \mleq{} a) \mwedge{} (r0 \mleq{} b)) \mvee{} ((a \mleq{} r0) \mwedge{} (b \mleq{} r0))) {}\mRightarrow{} (\mforall{}n:\mBbbN{}\msupplus{}. (|a - b|\^{}n \mleq{} |a\^{}n - b\^{}n|)))
By
Latex:
(Auto
THEN D -2
THEN Auto
THEN Try (Complete ((BLemma `rnexp-convex2` THEN Auto)))
THEN (InstLemma `rnexp-convex2` [\mkleeneopen{}-(a)\mkleeneclose{};\mkleeneopen{}-(b)\mkleeneclose{};\mkleeneopen{}n\mkleeneclose{}]\mcdot{} THENA (Auto THEN nRMul \mkleeneopen{}r(-1)\mkleeneclose{} 0\mcdot{} THEN Auto)))
Home
Index