Step
*
1
of Lemma
rnexp-convex3
1. a : ℝ
2. b : ℝ
3. a ≤ r0
4. b ≤ r0
5. n : ℕ+
6. |-(a) - -(b)|^n ≤ |-(a)^n - -(b)^n|
⊢ |a - b|^n ≤ |a^n - b^n|
BY
{ ((Assert ⌜|-(a) - -(b)| = |a - b|⌝⋅
THENA ((RW (AddrC [1] (RevLemmaC `rabs-rminus`)) 0 THENA Auto) THEN nRNorm 0 THEN Auto)
)
THEN (RWO "-1" (-2) THENA Auto)
THEN (RWO "-2" 0 THENA Auto)) }
1
1. a : ℝ
2. b : ℝ
3. a ≤ r0
4. b ≤ r0
5. n : ℕ+
6. |a - b|^n ≤ |-(a)^n - -(b)^n|
7. |-(a) - -(b)| = |a - b|
⊢ |-(a)^n - -(b)^n| ≤ |a^n - b^n|
Latex:
Latex:
1. a : \mBbbR{}
2. b : \mBbbR{}
3. a \mleq{} r0
4. b \mleq{} r0
5. n : \mBbbN{}\msupplus{}
6. |-(a) - -(b)|\^{}n \mleq{} |-(a)\^{}n - -(b)\^{}n|
\mvdash{} |a - b|\^{}n \mleq{} |a\^{}n - b\^{}n|
By
Latex:
((Assert \mkleeneopen{}|-(a) - -(b)| = |a - b|\mkleeneclose{}\mcdot{}
THENA ((RW (AddrC [1] (RevLemmaC `rabs-rminus`)) 0 THENA Auto) THEN nRNorm 0 THEN Auto)
)
THEN (RWO "-1" (-2) THENA Auto)
THEN (RWO "-2" 0 THENA Auto))
Home
Index