Step
*
1
1
of Lemma
rnexp-convex3
1. a : ℝ
2. b : ℝ
3. a ≤ r0
4. b ≤ r0
5. n : ℕ+
6. |a - b|^n ≤ |-(a)^n - -(b)^n|
7. |-(a) - -(b)| = |a - b|
⊢ |-(a)^n - -(b)^n| ≤ |a^n - b^n|
BY
{ (RWW "rminus-as-rmul rnexp-rmul rmul-rsub-distrib.1< rabs-rmul rabs-rnexp rabs-int rnexp-int" 0⋅ THENA Auto) }
1
1. a : ℝ
2. b : ℝ
3. a ≤ r0
4. b ≤ r0
5. n : ℕ+
6. |a - b|^n ≤ |-(a)^n - -(b)^n|
7. |-(a) - -(b)| = |a - b|
⊢ (r(|-1|^n) * |a^n - b^n|) ≤ |a^n - b^n|
Latex:
Latex:
1. a : \mBbbR{}
2. b : \mBbbR{}
3. a \mleq{} r0
4. b \mleq{} r0
5. n : \mBbbN{}\msupplus{}
6. |a - b|\^{}n \mleq{} |-(a)\^{}n - -(b)\^{}n|
7. |-(a) - -(b)| = |a - b|
\mvdash{} |-(a)\^{}n - -(b)\^{}n| \mleq{} |a\^{}n - b\^{}n|
By
Latex:
(RWW "rminus-as-rmul rnexp-rmul rmul-rsub-distrib.1<
rabs-rmul rabs-rnexp rabs-int rnexp-int" 0\mcdot{}
THENA Auto
)
Home
Index