Step
*
1
of Lemma
rnexp-req-iff-even
1. x : ℝ@i
2. y : ℝ@i
⊢ |x| = |y|
⇐⇒ (x * x) = (y * y)
BY
{ ((InstLemma `rnexp-req-iff` [⌜2⌝]⋅ THENA Auto)
THEN (RWO "rnexp2" (-1) THENA Auto)
THEN (RW (AddrC [1] (HypC (-1))) 0 THENA Auto)) }
1
1. x : ℝ@i
2. y : ℝ@i
3. ∀x,y:ℝ. ((r0 ≤ x)
⇒ (r0 ≤ y)
⇒ (x = y
⇐⇒ (x * x) = (y * y)))
⊢ (|x| * |x|) = (|y| * |y|)
⇐⇒ (x * x) = (y * y)
Latex:
Latex:
1. x : \mBbbR{}@i
2. y : \mBbbR{}@i
\mvdash{} |x| = |y| \mLeftarrow{}{}\mRightarrow{} (x * x) = (y * y)
By
Latex:
((InstLemma `rnexp-req-iff` [\mkleeneopen{}2\mkleeneclose{}]\mcdot{} THENA Auto)
THEN (RWO "rnexp2" (-1) THENA Auto)
THEN (RW (AddrC [1] (HypC (-1))) 0 THENA Auto))
Home
Index