Step
*
of Lemma
rpoly-nth-deriv_functionality
∀[d,n:ℕ]. ∀[a,b:ℕd + 1 ⟶ ℝ]. ∀[x1,x2:ℝ].
(rpoly-nth-deriv(n;d;a;x1) = rpoly-nth-deriv(n;d;b;x2)) supposing ((x1 = x2) and (∀i:ℕd + 1. ((a i) = (b i))))
BY
{ (Auto
THEN Unfold `rpoly-nth-deriv` 0
THEN AutoSplit
THEN Unfold `rpolynomial` 0
THEN (InstLemma `poly-nth-deriv_wf` [⌜n⌝;⌜(d - n) + 1⌝;⌜a⌝]⋅ THENA Auto)
THEN (InstLemma `poly-nth-deriv_wf` [⌜n⌝;⌜(d - n) + 1⌝;⌜b⌝]⋅ THENA Auto)
THEN BLemma `rsum_functionality`
THEN Auto
THEN D 0
THEN Auto
THEN BLemma `rmul_functionality`
THEN Auto) }
1
1. d : ℕ
2. n : ℕ
3. ¬d < n
4. a : ℕd + 1 ⟶ ℝ
5. b : ℕd + 1 ⟶ ℝ
6. x1 : ℝ
7. x2 : ℝ
8. ∀i:ℕd + 1. ((a i) = (b i))
9. x1 = x2
10. poly-nth-deriv(n;a) ∈ ℕ(d - n) + 1 ⟶ ℝ
11. poly-nth-deriv(n;b) ∈ ℕ(d - n) + 1 ⟶ ℝ
12. i : ℤ
13. 0 ≤ i
14. i ≤ (d - n)
⊢ (poly-nth-deriv(n;a) i) = (poly-nth-deriv(n;b) i)
2
1. d : ℕ
2. n : ℕ
3. ¬d < n
4. a : ℕd + 1 ⟶ ℝ
5. b : ℕd + 1 ⟶ ℝ
6. x1 : ℝ
7. x2 : ℝ
8. ∀i:ℕd + 1. ((a i) = (b i))
9. x1 = x2
10. poly-nth-deriv(n;a) ∈ ℕ(d - n) + 1 ⟶ ℝ
11. poly-nth-deriv(n;b) ∈ ℕ(d - n) + 1 ⟶ ℝ
12. i : ℤ
13. 0 ≤ i
14. i ≤ (d - n)
⊢ x1^i = x2^i
Latex:
Latex:
\mforall{}[d,n:\mBbbN{}]. \mforall{}[a,b:\mBbbN{}d + 1 {}\mrightarrow{} \mBbbR{}]. \mforall{}[x1,x2:\mBbbR{}].
(rpoly-nth-deriv(n;d;a;x1) = rpoly-nth-deriv(n;d;b;x2)) supposing
((x1 = x2) and
(\mforall{}i:\mBbbN{}d + 1. ((a i) = (b i))))
By
Latex:
(Auto
THEN Unfold `rpoly-nth-deriv` 0
THEN AutoSplit
THEN Unfold `rpolynomial` 0
THEN (InstLemma `poly-nth-deriv\_wf` [\mkleeneopen{}n\mkleeneclose{};\mkleeneopen{}(d - n) + 1\mkleeneclose{};\mkleeneopen{}a\mkleeneclose{}]\mcdot{} THENA Auto)
THEN (InstLemma `poly-nth-deriv\_wf` [\mkleeneopen{}n\mkleeneclose{};\mkleeneopen{}(d - n) + 1\mkleeneclose{};\mkleeneopen{}b\mkleeneclose{}]\mcdot{} THENA Auto)
THEN BLemma `rsum\_functionality`
THEN Auto
THEN D 0
THEN Auto
THEN BLemma `rmul\_functionality`
THEN Auto)
Home
Index