Nuprl Lemma : rpoly-nth-deriv_functionality
∀[d,n:ℕ]. ∀[a,b:ℕd + 1 ⟶ ℝ]. ∀[x1,x2:ℝ].
  (rpoly-nth-deriv(n;d;a;x1) = rpoly-nth-deriv(n;d;b;x2)) supposing ((x1 = x2) and (∀i:ℕd + 1. ((a i) = (b i))))
Proof
Definitions occuring in Statement : 
rpoly-nth-deriv: rpoly-nth-deriv(n;d;a;x)
, 
req: x = y
, 
real: ℝ
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
add: n + m
, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
rpoly-nth-deriv: rpoly-nth-deriv(n;d;a;x)
, 
nat: ℕ
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
exists: ∃x:A. B[x]
, 
prop: ℙ
, 
or: P ∨ Q
, 
sq_type: SQType(T)
, 
guard: {T}
, 
bnot: ¬bb
, 
assert: ↑b
, 
false: False
, 
not: ¬A
, 
rpolynomial: (Σi≤n. a_i * x^i)
, 
ge: i ≥ j 
, 
decidable: Dec(P)
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
top: Top
, 
subtract: n - m
, 
so_lambda: λ2x.t[x]
, 
subtype_rel: A ⊆r B
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
so_apply: x[s]
, 
pointwise-req: x[k] = y[k] for k ∈ [n,m]
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
nat_plus: ℕ+
, 
int_nzero: ℤ-o
, 
nequal: a ≠ b ∈ T 
, 
rev_uimplies: rev_uimplies(P;Q)
, 
rneq: x ≠ y
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
lt_int_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_lt_int, 
req_weakening, 
int-to-real_wf, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
less_than_wf, 
poly-nth-deriv_wf, 
subtract_wf, 
nat_properties, 
decidable__le, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermAdd_wf, 
itermSubtract_wf, 
itermVar_wf, 
intformless_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_add_lemma, 
int_term_value_subtract_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
le_wf, 
int_subtype_base, 
add-commutes, 
add-associates, 
minus-one-mul, 
add-swap, 
add-mul-special, 
zero-mul, 
add-zero, 
rsum_functionality, 
rmul_wf, 
rnexp_wf, 
int_seg_subtype_nat, 
false_wf, 
int_seg_wf, 
rmul_functionality, 
decidable__lt, 
lelt_wf, 
req_witness, 
rpoly-nth-deriv_wf, 
req_wf, 
all_wf, 
real_wf, 
nat_wf, 
poly-nth-deriv-req, 
int-rdiv_wf, 
fact_wf, 
subtype_rel_sets, 
nequal_wf, 
nat_plus_properties, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
equal-wf-base, 
nat_plus_wf, 
req_functionality, 
rdiv_wf, 
rless-int, 
rless_wf, 
int-rdiv-req, 
rdiv_functionality, 
rnexp_functionality
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setElimination, 
rename, 
because_Cache, 
hypothesis, 
hypothesisEquality, 
lambdaFormation, 
unionElimination, 
equalityElimination, 
equalityTransitivity, 
equalitySymmetry, 
productElimination, 
independent_isectElimination, 
sqequalRule, 
natural_numberEquality, 
dependent_pairFormation, 
promote_hyp, 
dependent_functionElimination, 
instantiate, 
cumulativity, 
independent_functionElimination, 
voidElimination, 
dependent_set_memberEquality, 
addEquality, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidEquality, 
independent_pairFormation, 
computeAll, 
multiplyEquality, 
applyEquality, 
functionExtensionality, 
functionEquality, 
setEquality, 
applyLambdaEquality, 
baseClosed, 
inrFormation
Latex:
\mforall{}[d,n:\mBbbN{}].  \mforall{}[a,b:\mBbbN{}d  +  1  {}\mrightarrow{}  \mBbbR{}].  \mforall{}[x1,x2:\mBbbR{}].
    (rpoly-nth-deriv(n;d;a;x1)  =  rpoly-nth-deriv(n;d;b;x2))  supposing 
          ((x1  =  x2)  and 
          (\mforall{}i:\mBbbN{}d  +  1.  ((a  i)  =  (b  i))))
Date html generated:
2017_10_03-PM-00_15_38
Last ObjectModification:
2017_07_28-AM-08_37_59
Theory : reals
Home
Index