Nuprl Lemma : rpoly-nth-deriv_functionality
∀[d,n:ℕ]. ∀[a,b:ℕd + 1 ⟶ ℝ]. ∀[x1,x2:ℝ].
(rpoly-nth-deriv(n;d;a;x1) = rpoly-nth-deriv(n;d;b;x2)) supposing ((x1 = x2) and (∀i:ℕd + 1. ((a i) = (b i))))
Proof
Definitions occuring in Statement :
rpoly-nth-deriv: rpoly-nth-deriv(n;d;a;x)
,
req: x = y
,
real: ℝ
,
int_seg: {i..j-}
,
nat: ℕ
,
uimplies: b supposing a
,
uall: ∀[x:A]. B[x]
,
all: ∀x:A. B[x]
,
apply: f a
,
function: x:A ⟶ B[x]
,
add: n + m
,
natural_number: $n
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
uimplies: b supposing a
,
rpoly-nth-deriv: rpoly-nth-deriv(n;d;a;x)
,
nat: ℕ
,
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
bool: 𝔹
,
unit: Unit
,
it: ⋅
,
btrue: tt
,
uiff: uiff(P;Q)
,
and: P ∧ Q
,
ifthenelse: if b then t else f fi
,
bfalse: ff
,
exists: ∃x:A. B[x]
,
prop: ℙ
,
or: P ∨ Q
,
sq_type: SQType(T)
,
guard: {T}
,
bnot: ¬bb
,
assert: ↑b
,
false: False
,
not: ¬A
,
rpolynomial: (Σi≤n. a_i * x^i)
,
ge: i ≥ j
,
decidable: Dec(P)
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
top: Top
,
subtract: n - m
,
so_lambda: λ2x.t[x]
,
subtype_rel: A ⊆r B
,
le: A ≤ B
,
less_than': less_than'(a;b)
,
so_apply: x[s]
,
pointwise-req: x[k] = y[k] for k ∈ [n,m]
,
int_seg: {i..j-}
,
lelt: i ≤ j < k
,
nat_plus: ℕ+
,
int_nzero: ℤ-o
,
nequal: a ≠ b ∈ T
,
rev_uimplies: rev_uimplies(P;Q)
,
rneq: x ≠ y
,
iff: P
⇐⇒ Q
,
rev_implies: P
⇐ Q
Lemmas referenced :
lt_int_wf,
bool_wf,
eqtt_to_assert,
assert_of_lt_int,
req_weakening,
int-to-real_wf,
eqff_to_assert,
equal_wf,
bool_cases_sqequal,
subtype_base_sq,
bool_subtype_base,
assert-bnot,
less_than_wf,
poly-nth-deriv_wf,
subtract_wf,
nat_properties,
decidable__le,
satisfiable-full-omega-tt,
intformand_wf,
intformnot_wf,
intformle_wf,
itermConstant_wf,
itermAdd_wf,
itermSubtract_wf,
itermVar_wf,
intformless_wf,
int_formula_prop_and_lemma,
int_formula_prop_not_lemma,
int_formula_prop_le_lemma,
int_term_value_constant_lemma,
int_term_value_add_lemma,
int_term_value_subtract_lemma,
int_term_value_var_lemma,
int_formula_prop_less_lemma,
int_formula_prop_wf,
le_wf,
int_subtype_base,
add-commutes,
add-associates,
minus-one-mul,
add-swap,
add-mul-special,
zero-mul,
add-zero,
rsum_functionality,
rmul_wf,
rnexp_wf,
int_seg_subtype_nat,
false_wf,
int_seg_wf,
rmul_functionality,
decidable__lt,
lelt_wf,
req_witness,
rpoly-nth-deriv_wf,
req_wf,
all_wf,
real_wf,
nat_wf,
poly-nth-deriv-req,
int-rdiv_wf,
fact_wf,
subtype_rel_sets,
nequal_wf,
nat_plus_properties,
intformeq_wf,
int_formula_prop_eq_lemma,
equal-wf-base,
nat_plus_wf,
req_functionality,
rdiv_wf,
rless-int,
rless_wf,
int-rdiv-req,
rdiv_functionality,
rnexp_functionality
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
extract_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
setElimination,
rename,
because_Cache,
hypothesis,
hypothesisEquality,
lambdaFormation,
unionElimination,
equalityElimination,
equalityTransitivity,
equalitySymmetry,
productElimination,
independent_isectElimination,
sqequalRule,
natural_numberEquality,
dependent_pairFormation,
promote_hyp,
dependent_functionElimination,
instantiate,
cumulativity,
independent_functionElimination,
voidElimination,
dependent_set_memberEquality,
addEquality,
lambdaEquality,
int_eqEquality,
intEquality,
isect_memberEquality,
voidEquality,
independent_pairFormation,
computeAll,
multiplyEquality,
applyEquality,
functionExtensionality,
functionEquality,
setEquality,
applyLambdaEquality,
baseClosed,
inrFormation
Latex:
\mforall{}[d,n:\mBbbN{}]. \mforall{}[a,b:\mBbbN{}d + 1 {}\mrightarrow{} \mBbbR{}]. \mforall{}[x1,x2:\mBbbR{}].
(rpoly-nth-deriv(n;d;a;x1) = rpoly-nth-deriv(n;d;b;x2)) supposing
((x1 = x2) and
(\mforall{}i:\mBbbN{}d + 1. ((a i) = (b i))))
Date html generated:
2017_10_03-PM-00_15_38
Last ObjectModification:
2017_07_28-AM-08_37_59
Theory : reals
Home
Index