Nuprl Lemma : poly-nth-deriv-req
∀[n,d:ℕ]. ∀[a:ℕn + d ⟶ ℝ]. ∀[i:ℕd].  ((poly-nth-deriv(n;a) i) = (r((i + n)!) * (a (i + n)))/(i)!)
Proof
Definitions occuring in Statement : 
poly-nth-deriv: poly-nth-deriv(n;a)
, 
int-rdiv: (a)/k1
, 
req: x = y
, 
rmul: a * b
, 
int-to-real: r(n)
, 
real: ℝ
, 
fact: (n)!
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
add: n + m
, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
nat: ℕ
, 
implies: P 
⇒ Q
, 
false: False
, 
ge: i ≥ j 
, 
uimplies: b supposing a
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
all: ∀x:A. B[x]
, 
top: Top
, 
and: P ∧ Q
, 
prop: ℙ
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
le: A ≤ B
, 
less_than: a < b
, 
squash: ↓T
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
subtype_rel: A ⊆r B
, 
nat_plus: ℕ+
, 
poly-nth-deriv: poly-nth-deriv(n;a)
, 
less_than': less_than'(a;b)
, 
rneq: x ≠ y
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
rat_term_to_real: rat_term_to_real(f;t)
, 
rtermDivide: num "/" denom
, 
rat_term_ind: rat_term_ind, 
rtermMultiply: left "*" right
, 
rtermVar: rtermVar(var)
, 
pi1: fst(t)
, 
true: True
, 
pi2: snd(t)
, 
uiff: uiff(P;Q)
, 
rev_uimplies: rev_uimplies(P;Q)
, 
poly-deriv: poly-deriv(a)
, 
assert: ↑b
, 
bnot: ¬bb
, 
sq_type: SQType(T)
, 
bfalse: ff
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
it: ⋅
, 
unit: Unit
, 
bool: 𝔹
, 
subtract: n - m
, 
nequal: a ≠ b ∈ T 
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
int_nzero: ℤ-o
, 
sq_exists: ∃x:A [B[x]]
, 
rless: x < y
, 
sq_stable: SqStable(P)
, 
real: ℝ
, 
rdiv: (x/y)
, 
itermConstant: "const"
, 
req_int_terms: t1 ≡ t2
Lemmas referenced : 
nat_properties, 
full-omega-unsat, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
ge_wf, 
istype-less_than, 
req_witness, 
int_seg_properties, 
poly-nth-deriv_wf, 
decidable__le, 
intformnot_wf, 
int_formula_prop_not_lemma, 
istype-le, 
int-rdiv_wf, 
fact_wf, 
rmul_wf, 
int-to-real_wf, 
itermAdd_wf, 
int_term_value_add_lemma, 
decidable__lt, 
int_seg_wf, 
real_wf, 
istype-nat, 
subtract-1-ge-0, 
nat_plus_inc_int_nzero, 
primrec0_lemma, 
add-zero, 
rdiv_wf, 
int_seg_subtype_nat, 
istype-false, 
rless-int, 
nat_plus_properties, 
rless_wf, 
assert-rat-term-eq2, 
rtermVar_wf, 
rtermDivide_wf, 
rtermMultiply_wf, 
req_functionality, 
req_weakening, 
int-rdiv-req, 
neg_assert_of_eq_int, 
assert-bnot, 
bool_subtype_base, 
subtype_base_sq, 
bool_cases_sqequal, 
equal_wf, 
eqff_to_assert, 
int_formula_prop_eq_lemma, 
intformeq_wf, 
satisfiable-full-omega-tt, 
assert_of_eq_int, 
eqtt_to_assert, 
bool_wf, 
eq_int_wf, 
primrec-unroll, 
lelt_wf, 
add-subtract-cancel, 
int_term_value_subtract_lemma, 
itermSubtract_wf, 
subtract_wf, 
add-member-int_seg2, 
zero-add, 
add-swap, 
add-associates, 
add-commutes, 
int_subtype_base, 
le_wf, 
false_wf, 
nat_plus_wf, 
equal-wf-base, 
nequal_wf, 
less_than_wf, 
subtype_rel_sets, 
rmul_functionality, 
decidable__equal_int, 
fact-non-zero, 
rneq-int, 
equal-wf-T-base, 
fact_unroll_1, 
req-int, 
rmul-int, 
int_entire_a, 
rinv_wf2, 
req_wf, 
rneq_functionality, 
sq_stable__less_than, 
rdiv_functionality, 
uiff_transitivity, 
rinv-of-rmul, 
req_transitivity, 
real_term_polynomial, 
itermMultiply_wf, 
real_term_value_const_lemma, 
real_term_value_sub_lemma, 
real_term_value_mul_lemma, 
real_term_value_var_lemma, 
req-iff-rsub-is-0, 
rmul-rinv3, 
rinv-mul-as-rdiv
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
setElimination, 
rename, 
intWeakElimination, 
lambdaFormation_alt, 
natural_numberEquality, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation_alt, 
lambdaEquality_alt, 
int_eqEquality, 
dependent_functionElimination, 
isect_memberEquality_alt, 
voidElimination, 
sqequalRule, 
independent_pairFormation, 
universeIsType, 
productElimination, 
imageElimination, 
isectIsTypeImplies, 
inhabitedIsType, 
functionIsTypeImplies, 
applyEquality, 
dependent_set_memberEquality_alt, 
unionElimination, 
because_Cache, 
addEquality, 
productIsType, 
functionIsType, 
equalityTransitivity, 
equalitySymmetry, 
equalityIstype, 
inrFormation_alt, 
applyLambdaEquality, 
cumulativity, 
instantiate, 
promote_hyp, 
computeAll, 
intEquality, 
lambdaEquality, 
dependent_pairFormation, 
equalityElimination, 
lambdaFormation, 
voidEquality, 
isect_memberEquality, 
dependent_set_memberEquality, 
baseClosed, 
setEquality, 
functionExtensionality, 
inrFormation, 
multiplyEquality, 
closedConclusion, 
baseApply, 
imageMemberEquality
Latex:
\mforall{}[n,d:\mBbbN{}].  \mforall{}[a:\mBbbN{}n  +  d  {}\mrightarrow{}  \mBbbR{}].  \mforall{}[i:\mBbbN{}d].    ((poly-nth-deriv(n;a)  i)  =  (r((i  +  n)!)  *  (a  (i  +  n)))/(i)!)
Date html generated:
2019_10_30-AM-09_02_16
Last ObjectModification:
2019_04_02-AM-09_46_45
Theory : reals
Home
Index