Nuprl Lemma : poly-nth-deriv-req

[n,d:ℕ]. ∀[a:ℕd ⟶ ℝ]. ∀[i:ℕd].  ((poly-nth-deriv(n;a) i) (r((i n)!) (a (i n)))/(i)!)


Proof




Definitions occuring in Statement :  poly-nth-deriv: poly-nth-deriv(n;a) int-rdiv: (a)/k1 req: y rmul: b int-to-real: r(n) real: fact: (n)! int_seg: {i..j-} nat: uall: [x:A]. B[x] apply: a function: x:A ⟶ B[x] add: m natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T nat: implies:  Q false: False ge: i ≥  uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] all: x:A. B[x] top: Top and: P ∧ Q prop: int_seg: {i..j-} lelt: i ≤ j < k le: A ≤ B less_than: a < b squash: T decidable: Dec(P) or: P ∨ Q subtype_rel: A ⊆B nat_plus: + poly-nth-deriv: poly-nth-deriv(n;a) less_than': less_than'(a;b) rneq: x ≠ y guard: {T} iff: ⇐⇒ Q rev_implies:  Q rat_term_to_real: rat_term_to_real(f;t) rtermDivide: num "/" denom rat_term_ind: rat_term_ind rtermMultiply: left "*" right rtermVar: rtermVar(var) pi1: fst(t) true: True pi2: snd(t) uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) poly-deriv: poly-deriv(a) assert: b bnot: ¬bb sq_type: SQType(T) bfalse: ff ifthenelse: if then else fi  btrue: tt it: unit: Unit bool: 𝔹 subtract: m nequal: a ≠ b ∈  so_apply: x[s] so_lambda: λ2x.t[x] int_nzero: -o sq_exists: x:A [B[x]] rless: x < y sq_stable: SqStable(P) real: rdiv: (x/y) itermConstant: "const" req_int_terms: t1 ≡ t2
Lemmas referenced :  nat_properties full-omega-unsat intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf istype-less_than req_witness int_seg_properties poly-nth-deriv_wf decidable__le intformnot_wf int_formula_prop_not_lemma istype-le int-rdiv_wf fact_wf rmul_wf int-to-real_wf itermAdd_wf int_term_value_add_lemma decidable__lt int_seg_wf real_wf istype-nat subtract-1-ge-0 nat_plus_inc_int_nzero primrec0_lemma add-zero rdiv_wf int_seg_subtype_nat istype-false rless-int nat_plus_properties rless_wf assert-rat-term-eq2 rtermVar_wf rtermDivide_wf rtermMultiply_wf req_functionality req_weakening int-rdiv-req neg_assert_of_eq_int assert-bnot bool_subtype_base subtype_base_sq bool_cases_sqequal equal_wf eqff_to_assert int_formula_prop_eq_lemma intformeq_wf satisfiable-full-omega-tt assert_of_eq_int eqtt_to_assert bool_wf eq_int_wf primrec-unroll lelt_wf add-subtract-cancel int_term_value_subtract_lemma itermSubtract_wf subtract_wf add-member-int_seg2 zero-add add-swap add-associates add-commutes int_subtype_base le_wf false_wf nat_plus_wf equal-wf-base nequal_wf less_than_wf subtype_rel_sets rmul_functionality decidable__equal_int fact-non-zero rneq-int equal-wf-T-base fact_unroll_1 req-int rmul-int int_entire_a rinv_wf2 req_wf rneq_functionality sq_stable__less_than rdiv_functionality uiff_transitivity rinv-of-rmul req_transitivity real_term_polynomial itermMultiply_wf real_term_value_const_lemma real_term_value_sub_lemma real_term_value_mul_lemma real_term_value_var_lemma req-iff-rsub-is-0 rmul-rinv3 rinv-mul-as-rdiv
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis setElimination rename intWeakElimination lambdaFormation_alt natural_numberEquality independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation_alt lambdaEquality_alt int_eqEquality dependent_functionElimination isect_memberEquality_alt voidElimination sqequalRule independent_pairFormation universeIsType productElimination imageElimination isectIsTypeImplies inhabitedIsType functionIsTypeImplies applyEquality dependent_set_memberEquality_alt unionElimination because_Cache addEquality productIsType functionIsType equalityTransitivity equalitySymmetry equalityIstype inrFormation_alt applyLambdaEquality cumulativity instantiate promote_hyp computeAll intEquality lambdaEquality dependent_pairFormation equalityElimination lambdaFormation voidEquality isect_memberEquality dependent_set_memberEquality baseClosed setEquality functionExtensionality inrFormation multiplyEquality closedConclusion baseApply imageMemberEquality

Latex:
\mforall{}[n,d:\mBbbN{}].  \mforall{}[a:\mBbbN{}n  +  d  {}\mrightarrow{}  \mBbbR{}].  \mforall{}[i:\mBbbN{}d].    ((poly-nth-deriv(n;a)  i)  =  (r((i  +  n)!)  *  (a  (i  +  n)))/(i)!)



Date html generated: 2019_10_30-AM-09_02_16
Last ObjectModification: 2019_04_02-AM-09_46_45

Theory : reals


Home Index