Nuprl Lemma : poly-nth-deriv_wf

[n,d:ℕ]. ∀[a:ℕd ⟶ ℝ].  (poly-nth-deriv(n;a) ∈ ℕd ⟶ ℝ)


Proof




Definitions occuring in Statement :  poly-nth-deriv: poly-nth-deriv(n;a) real: int_seg: {i..j-} nat: uall: [x:A]. B[x] member: t ∈ T function: x:A ⟶ B[x] add: m natural_number: $n
Definitions unfolded in proof :  poly-nth-deriv: poly-nth-deriv(n;a) uall: [x:A]. B[x] member: t ∈ T nat: implies:  Q false: False ge: i ≥  uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] not: ¬A all: x:A. B[x] top: Top and: P ∧ Q prop: sq_type: SQType(T) guard: {T} decidable: Dec(P) or: P ∨ Q bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  uiff: uiff(P;Q) subtype_rel: A ⊆B bfalse: ff bnot: ¬bb assert: b nequal: a ≠ b ∈  subtract: m
Lemmas referenced :  nat_properties satisfiable-full-omega-tt intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf int_seg_wf real_wf nat_wf primrec0_lemma subtype_base_sq int_subtype_base zero-add decidable__le subtract_wf intformnot_wf itermSubtract_wf int_formula_prop_not_lemma int_term_value_subtract_lemma primrec-unroll eq_int_wf bool_wf eqtt_to_assert assert_of_eq_int less_than_transitivity1 le_weakening less_than_irreflexivity eqff_to_assert equal_wf bool_cases_sqequal bool_subtype_base assert-bnot neg_assert_of_eq_int poly-deriv_wf itermAdd_wf int_term_value_add_lemma le_wf add-commutes add-associates add-swap
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis setElimination rename intWeakElimination lambdaFormation natural_numberEquality independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll independent_functionElimination axiomEquality equalityTransitivity equalitySymmetry functionEquality addEquality instantiate cumulativity because_Cache unionElimination equalityElimination productElimination applyEquality promote_hyp dependent_set_memberEquality

Latex:
\mforall{}[n,d:\mBbbN{}].  \mforall{}[a:\mBbbN{}n  +  d  {}\mrightarrow{}  \mBbbR{}].    (poly-nth-deriv(n;a)  \mmember{}  \mBbbN{}d  {}\mrightarrow{}  \mBbbR{})



Date html generated: 2017_10_03-PM-00_14_05
Last ObjectModification: 2017_07_28-AM-08_36_51

Theory : reals


Home Index