Nuprl Lemma : poly-deriv_wf

n:ℕ. ∀a:ℕ1 ⟶ ℝ.  (poly-deriv(a) ∈ ℕn ⟶ ℝ)


Proof




Definitions occuring in Statement :  poly-deriv: poly-deriv(a) real: int_seg: {i..j-} nat: all: x:A. B[x] member: t ∈ T function: x:A ⟶ B[x] add: m natural_number: $n
Definitions unfolded in proof :  less_than: a < b le: A ≤ B prop: subtract: m top: Top not: ¬A implies:  Q false: False exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) or: P ∨ Q decidable: Dec(P) ge: i ≥  lelt: i ≤ j < k uimplies: supposing a and: P ∧ Q uiff: uiff(P;Q) nat: int_seg: {i..j-} uall: [x:A]. B[x] poly-deriv: poly-deriv(a) member: t ∈ T all: x:A. B[x]
Lemmas referenced :  rmul_wf int-to-real_wf add-member-int_seg2 nat_properties decidable__le subtract_wf satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermSubtract_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_subtract_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf add-subtract-cancel decidable__lt intformless_wf int_formula_prop_less_lemma lelt_wf int_seg_wf real_wf nat_wf
Rules used in proof :  functionEquality computeAll voidEquality voidElimination isect_memberEquality intEquality int_eqEquality dependent_pairFormation unionElimination dependent_functionElimination independent_pairFormation dependent_set_memberEquality independent_isectElimination productElimination because_Cache applyEquality natural_numberEquality hypothesis hypothesisEquality rename setElimination addEquality thin isectElimination sqequalHypSubstitution lemma_by_obid lambdaEquality sqequalRule cut lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}n:\mBbbN{}.  \mforall{}a:\mBbbN{}n  +  1  {}\mrightarrow{}  \mBbbR{}.    (poly-deriv(a)  \mmember{}  \mBbbN{}n  {}\mrightarrow{}  \mBbbR{})



Date html generated: 2016_05_18-AM-10_08_05
Last ObjectModification: 2016_01_17-AM-00_37_44

Theory : reals


Home Index