Nuprl Lemma : poly-deriv_wf
∀n:ℕ. ∀a:ℕn + 1 ⟶ ℝ.  (poly-deriv(a) ∈ ℕn ⟶ ℝ)
Proof
Definitions occuring in Statement : 
poly-deriv: poly-deriv(a)
, 
real: ℝ
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
add: n + m
, 
natural_number: $n
Definitions unfolded in proof : 
less_than: a < b
, 
le: A ≤ B
, 
prop: ℙ
, 
subtract: n - m
, 
top: Top
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
false: False
, 
exists: ∃x:A. B[x]
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
or: P ∨ Q
, 
decidable: Dec(P)
, 
ge: i ≥ j 
, 
lelt: i ≤ j < k
, 
uimplies: b supposing a
, 
and: P ∧ Q
, 
uiff: uiff(P;Q)
, 
nat: ℕ
, 
int_seg: {i..j-}
, 
uall: ∀[x:A]. B[x]
, 
poly-deriv: poly-deriv(a)
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
Lemmas referenced : 
rmul_wf, 
int-to-real_wf, 
add-member-int_seg2, 
nat_properties, 
decidable__le, 
subtract_wf, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermSubtract_wf, 
itermConstant_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_subtract_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
add-subtract-cancel, 
decidable__lt, 
intformless_wf, 
int_formula_prop_less_lemma, 
lelt_wf, 
int_seg_wf, 
real_wf, 
nat_wf
Rules used in proof : 
functionEquality, 
computeAll, 
voidEquality, 
voidElimination, 
isect_memberEquality, 
intEquality, 
int_eqEquality, 
dependent_pairFormation, 
unionElimination, 
dependent_functionElimination, 
independent_pairFormation, 
dependent_set_memberEquality, 
independent_isectElimination, 
productElimination, 
because_Cache, 
applyEquality, 
natural_numberEquality, 
hypothesis, 
hypothesisEquality, 
rename, 
setElimination, 
addEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
lemma_by_obid, 
lambdaEquality, 
sqequalRule, 
cut, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}n:\mBbbN{}.  \mforall{}a:\mBbbN{}n  +  1  {}\mrightarrow{}  \mBbbR{}.    (poly-deriv(a)  \mmember{}  \mBbbN{}n  {}\mrightarrow{}  \mBbbR{})
Date html generated:
2016_05_18-AM-10_08_05
Last ObjectModification:
2016_01_17-AM-00_37_44
Theory : reals
Home
Index