Nuprl Lemma : rpoly-nth-deriv_wf
∀[d,n:ℕ]. ∀[a:ℕd + 1 ⟶ ℝ]. ∀[x:ℝ].  (rpoly-nth-deriv(n;d;a;x) ∈ ℝ)
Proof
Definitions occuring in Statement : 
rpoly-nth-deriv: rpoly-nth-deriv(n;d;a;x)
, 
real: ℝ
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
add: n + m
, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
rpoly-nth-deriv: rpoly-nth-deriv(n;d;a;x)
, 
nat: ℕ
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
guard: {T}
, 
ge: i ≥ j 
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
not: ¬A
, 
top: Top
, 
prop: ℙ
, 
subtract: n - m
, 
sq_type: SQType(T)
Lemmas referenced : 
lt_int_wf, 
bool_wf, 
uiff_transitivity, 
equal-wf-T-base, 
assert_wf, 
less_than_wf, 
eqtt_to_assert, 
assert_of_lt_int, 
int-to-real_wf, 
le_int_wf, 
le_wf, 
bnot_wf, 
eqff_to_assert, 
assert_functionality_wrt_uiff, 
bnot_of_lt_int, 
assert_of_le_int, 
rpolynomial_wf, 
subtract_wf, 
nat_properties, 
decidable__le, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermSubtract_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_subtract_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
poly-nth-deriv_wf, 
itermAdd_wf, 
int_term_value_add_lemma, 
subtype_base_sq, 
int_subtype_base, 
add-commutes, 
add-associates, 
minus-one-mul, 
add-swap, 
add-mul-special, 
zero-mul, 
add-zero, 
equal_wf, 
real_wf, 
int_seg_wf, 
nat_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setElimination, 
rename, 
because_Cache, 
hypothesis, 
hypothesisEquality, 
lambdaFormation, 
unionElimination, 
equalityElimination, 
equalityTransitivity, 
equalitySymmetry, 
baseClosed, 
independent_functionElimination, 
productElimination, 
independent_isectElimination, 
natural_numberEquality, 
dependent_set_memberEquality, 
dependent_functionElimination, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
computeAll, 
addEquality, 
instantiate, 
cumulativity, 
multiplyEquality, 
axiomEquality, 
functionEquality
Latex:
\mforall{}[d,n:\mBbbN{}].  \mforall{}[a:\mBbbN{}d  +  1  {}\mrightarrow{}  \mBbbR{}].  \mforall{}[x:\mBbbR{}].    (rpoly-nth-deriv(n;d;a;x)  \mmember{}  \mBbbR{})
Date html generated:
2017_10_03-PM-00_15_14
Last ObjectModification:
2017_07_28-AM-08_37_41
Theory : reals
Home
Index