Nuprl Lemma : rpoly-nth-deriv_wf

[d,n:ℕ]. ∀[a:ℕ1 ⟶ ℝ]. ∀[x:ℝ].  (rpoly-nth-deriv(n;d;a;x) ∈ ℝ)


Proof




Definitions occuring in Statement :  rpoly-nth-deriv: rpoly-nth-deriv(n;d;a;x) real: int_seg: {i..j-} nat: uall: [x:A]. B[x] member: t ∈ T function: x:A ⟶ B[x] add: m natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T rpoly-nth-deriv: rpoly-nth-deriv(n;d;a;x) nat: all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a ifthenelse: if then else fi  bfalse: ff guard: {T} ge: i ≥  decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A top: Top prop: subtract: m sq_type: SQType(T)
Lemmas referenced :  lt_int_wf bool_wf uiff_transitivity equal-wf-T-base assert_wf less_than_wf eqtt_to_assert assert_of_lt_int int-to-real_wf le_int_wf le_wf bnot_wf eqff_to_assert assert_functionality_wrt_uiff bnot_of_lt_int assert_of_le_int rpolynomial_wf subtract_wf nat_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermSubtract_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_subtract_lemma int_term_value_var_lemma int_formula_prop_wf poly-nth-deriv_wf itermAdd_wf int_term_value_add_lemma subtype_base_sq int_subtype_base add-commutes add-associates minus-one-mul add-swap add-mul-special zero-mul add-zero equal_wf real_wf int_seg_wf nat_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin setElimination rename because_Cache hypothesis hypothesisEquality lambdaFormation unionElimination equalityElimination equalityTransitivity equalitySymmetry baseClosed independent_functionElimination productElimination independent_isectElimination natural_numberEquality dependent_set_memberEquality dependent_functionElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll addEquality instantiate cumulativity multiplyEquality axiomEquality functionEquality

Latex:
\mforall{}[d,n:\mBbbN{}].  \mforall{}[a:\mBbbN{}d  +  1  {}\mrightarrow{}  \mBbbR{}].  \mforall{}[x:\mBbbR{}].    (rpoly-nth-deriv(n;d;a;x)  \mmember{}  \mBbbR{})



Date html generated: 2017_10_03-PM-00_15_14
Last ObjectModification: 2017_07_28-AM-08_37_41

Theory : reals


Home Index