Nuprl Lemma : rpolynomial_wf

[n:ℕ]. ∀[a:ℕ1 ⟶ ℝ]. ∀[x:ℝ].  ((Σi≤n. a_i x^i) ∈ ℝ)


Proof




Definitions occuring in Statement :  rpolynomial: i≤n. a_i x^i) real: int_seg: {i..j-} nat: uall: [x:A]. B[x] member: t ∈ T function: x:A ⟶ B[x] add: m natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T rpolynomial: i≤n. a_i x^i) nat: so_lambda: λ2x.t[x] subtype_rel: A ⊆B uimplies: supposing a le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) false: False not: ¬A implies:  Q prop: so_apply: x[s]
Lemmas referenced :  rsum_wf rmul_wf rnexp_wf int_seg_subtype_nat false_wf int_seg_wf real_wf nat_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin natural_numberEquality setElimination rename hypothesisEquality lambdaEquality applyEquality addEquality independent_isectElimination independent_pairFormation lambdaFormation hypothesis axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality because_Cache functionEquality

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[a:\mBbbN{}n  +  1  {}\mrightarrow{}  \mBbbR{}].  \mforall{}[x:\mBbbR{}].    ((\mSigma{}i\mleq{}n.  a\_i  *  x\^{}i)  \mmember{}  \mBbbR{})



Date html generated: 2016_05_18-AM-07_44_08
Last ObjectModification: 2015_12_28-AM-01_00_19

Theory : reals


Home Index