Step
*
1
of Lemma
rpolynomial-complete-factors
1. n : ℕ+
2. a : ℕ1 + 1 ⟶ ℝ
3. z : ℕ1 ⟶ ℝ
4. ∀i,j:ℕ1. ((¬(i = j ∈ ℤ))
⇒ z i ≠ z j)
5. ∀j:ℕ1. ((Σi≤1. a_i * z j^i) = r0)
6. x : ℝ
⊢ (Σi≤1. a_i * x^i) = ((a 1) * rprod(0;1 - 1;j.x - z j))
BY
{ ((D -2 With ⌜0⌝ THENA Auto)
THEN (InstLemma `rpolynomial-linear-factor` [⌜1⌝;⌜a⌝;⌜z 0⌝]⋅ THENA Auto)
THEN ExRepD
THEN (RWO "-2" 0 THENA Auto)
THEN Reduce 0) }
1
1. n : ℕ+
2. a : ℕ1 + 1 ⟶ ℝ
3. z : ℕ1 ⟶ ℝ
4. ∀i,j:ℕ1. ((¬(i = j ∈ ℤ))
⇒ z i ≠ z j)
5. x : ℝ
6. (Σi≤1. a_i * z 0^i) = r0
7. b : ℕ1 ⟶ ℝ
8. ∀[x:ℝ]. ((Σi≤1. a_i * x^i) = ((x - z 0) * (Σi≤1 - 1. b_i * x^i)))
9. (b (1 - 1)) = (a 1)
⊢ ((x - z 0) * (Σi≤0. b_i * x^i)) = ((a 1) * rprod(0;0;j.x - z j))
Latex:
Latex:
1. n : \mBbbN{}\msupplus{}
2. a : \mBbbN{}1 + 1 {}\mrightarrow{} \mBbbR{}
3. z : \mBbbN{}1 {}\mrightarrow{} \mBbbR{}
4. \mforall{}i,j:\mBbbN{}1. ((\mneg{}(i = j)) {}\mRightarrow{} z i \mneq{} z j)
5. \mforall{}j:\mBbbN{}1. ((\mSigma{}i\mleq{}1. a\_i * z j\^{}i) = r0)
6. x : \mBbbR{}
\mvdash{} (\mSigma{}i\mleq{}1. a\_i * x\^{}i) = ((a 1) * rprod(0;1 - 1;j.x - z j))
By
Latex:
((D -2 With \mkleeneopen{}0\mkleeneclose{} THENA Auto)
THEN (InstLemma `rpolynomial-linear-factor` [\mkleeneopen{}1\mkleeneclose{};\mkleeneopen{}a\mkleeneclose{};\mkleeneopen{}z 0\mkleeneclose{}]\mcdot{} THENA Auto)
THEN ExRepD
THEN (RWO "-2" 0 THENA Auto)
THEN Reduce 0)
Home
Index