Nuprl Lemma : rpolynomial-complete-factors

n:ℕ+. ∀a:ℕ1 ⟶ ℝ. ∀z:ℕn ⟶ ℝ.
  ((∀i,j:ℕn.  ((¬(i j ∈ ℤ))  i ≠ j))
   ∀[x:ℝ]. ((Σi≤n. a_i x^i) ((a n) rprod(0;n 1;j.x j))) supposing ∀j:ℕn. ((Σi≤n. a_i j^i) r0))


Proof




Definitions occuring in Statement :  rprod: rprod(n;m;k.x[k]) rpolynomial: i≤n. a_i x^i) rneq: x ≠ y rsub: y req: y rmul: b int-to-real: r(n) real: int_seg: {i..j-} nat_plus: + uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] not: ¬A implies:  Q apply: a function: x:A ⟶ B[x] subtract: m add: m natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q uimplies: supposing a member: t ∈ T uall: [x:A]. B[x] nat: nat_plus: + decidable: Dec(P) or: P ∨ Q not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top prop: false: False int_seg: {i..j-} lelt: i ≤ j < k and: P ∧ Q subtract: m so_lambda: λ2x.t[x] so_apply: x[s] subtype_rel: A ⊆B uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) rprod: rprod(n;m;k.x[k]) rpolynomial: i≤n. a_i x^i) lt_int: i <j ifthenelse: if then else fi  bfalse: ff le: A ≤ B less_than': less_than'(a;b) btrue: tt req_int_terms: t1 ≡ t2 iff: ⇐⇒ Q rev_implies:  Q true: True rneq: x ≠ y guard: {T} sq_type: SQType(T) rless: x < y sq_exists: x:A [B[x]] bool: 𝔹 unit: Unit it: bnot: ¬bb assert: b
Lemmas referenced :  req_witness rpolynomial_wf nat_plus_properties decidable__le full-omega-unsat intformnot_wf intformle_wf itermConstant_wf istype-int int_formula_prop_not_lemma istype-void int_formula_prop_le_lemma int_term_value_constant_lemma int_formula_prop_wf istype-le rmul_wf decidable__lt intformless_wf int_formula_prop_less_lemma istype-less_than rprod_wf rsub_wf subtract-add-cancel intformand_wf itermVar_wf int_formula_prop_and_lemma int_term_value_var_lemma int_seg_wf subtract_wf real_wf req_wf int_seg_properties int-to-real_wf set_subtype_base lelt_wf int_subtype_base intformeq_wf int_formula_prop_eq_lemma itermAdd_wf int_term_value_add_lemma add-subtract-cancel rneq_wf primrec-wf-nat-plus all_wf not_wf equal-wf-base nat_plus_subtype_nat uall_wf nat_plus_wf rpolynomial-linear-factor itermSubtract_wf int_term_value_subtract_lemma req_functionality req_weakening rsum_wf rnexp_wf int_seg_subtype_nat istype-false rnexp_zero_lemma rmul_functionality rsum-single itermMultiply_wf req-iff-rsub-is-0 real_polynomial_null real_term_value_sub_lemma real_term_value_mul_lemma real_term_value_var_lemma real_term_value_const_lemma subtype_rel_function int_seg_subtype not-le-2 condition-implies-le minus-add minus-one-mul add-swap minus-one-mul-top add-mul-special zero-mul add-zero add-associates add-commutes le-add-cancel subtype_rel_self subtype_base_sq radd-preserves-rless rless_wf radd_wf rless_functionality real_term_value_add_lemma rmul_preserves_req req_inversion le-add-cancel2 lt_int_wf eqtt_to_assert assert_of_lt_int eqff_to_assert bool_cases_sqequal bool_wf bool_subtype_base assert-bnot iff_weakening_uiff assert_wf less_than_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut isect_memberFormation_alt introduction extract_by_obid sqequalHypSubstitution isectElimination thin dependent_set_memberEquality_alt natural_numberEquality hypothesisEquality hypothesis setElimination rename dependent_functionElimination unionElimination independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation_alt lambdaEquality_alt isect_memberEquality_alt voidElimination sqequalRule universeIsType applyEquality independent_pairFormation productIsType closedConclusion productElimination because_Cache int_eqEquality addEquality isectIsTypeImplies inhabitedIsType functionIsType equalityIstype intEquality sqequalBase equalitySymmetry isectIsType functionEquality isectEquality minusEquality setIsType baseApply baseClosed multiplyEquality instantiate equalityTransitivity inlFormation_alt inrFormation_alt equalityElimination promote_hyp cumulativity

Latex:
\mforall{}n:\mBbbN{}\msupplus{}.  \mforall{}a:\mBbbN{}n  +  1  {}\mrightarrow{}  \mBbbR{}.  \mforall{}z:\mBbbN{}n  {}\mrightarrow{}  \mBbbR{}.
    ((\mforall{}i,j:\mBbbN{}n.    ((\mneg{}(i  =  j))  {}\mRightarrow{}  z  i  \mneq{}  z  j))
    {}\mRightarrow{}  \mforall{}[x:\mBbbR{}].  ((\mSigma{}i\mleq{}n.  a\_i  *  x\^{}i)  =  ((a  n)  *  rprod(0;n  -  1;j.x  -  z  j))) 
          supposing  \mforall{}j:\mBbbN{}n.  ((\mSigma{}i\mleq{}n.  a\_i  *  z  j\^{}i)  =  r0))



Date html generated: 2019_10_29-AM-10_20_39
Last ObjectModification: 2019_01_14-PM-11_17_37

Theory : reals


Home Index