Nuprl Lemma : rprod_wf

[n,m:ℤ]. ∀[x:{n..m 1-} ⟶ ℝ].  (rprod(n;m;k.x[k]) ∈ ℝ)


Proof




Definitions occuring in Statement :  rprod: rprod(n;m;k.x[k]) real: int_seg: {i..j-} uall: [x:A]. B[x] so_apply: x[s] member: t ∈ T function: x:A ⟶ B[x] add: m natural_number: $n int:
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] member: t ∈ T nat: implies:  Q false: False ge: i ≥  uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top and: P ∧ Q prop: rprod: rprod(n;m;k.x[k]) bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  bfalse: ff or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b rev_implies:  Q iff: ⇐⇒ Q so_apply: x[s] int_seg: {i..j-} lelt: i ≤ j < k decidable: Dec(P) subtype_rel: A ⊆B subtract: m le: A ≤ B less_than': less_than'(a;b) true: True
Lemmas referenced :  nat_properties full-omega-unsat intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf istype-less_than lt_int_wf eqtt_to_assert assert_of_lt_int itermAdd_wf int_term_value_add_lemma eqff_to_assert bool_cases_sqequal subtype_base_sq bool_wf bool_subtype_base assert-bnot iff_weakening_uiff assert_wf less_than_wf int_seg_wf real_wf subtract-1-ge-0 istype-nat subtract_wf rmul_wf int-to-real_wf decidable__le intformnot_wf int_formula_prop_not_lemma decidable__lt istype-le itermSubtract_wf int_term_value_subtract_lemma int_subtype_base decidable__equal_int intformeq_wf int_formula_prop_eq_lemma subtype_rel_function int_seg_subtype le_reflexive istype-false not-le-2 condition-implies-le add-associates minus-add minus-one-mul add-swap minus-one-mul-top add-mul-special zero-mul zero-add add-zero add-commutes le-add-cancel subtype_rel_self trivial-int-eq1
Rules used in proof :  cut sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis setElimination rename sqequalRule intWeakElimination natural_numberEquality independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation_alt lambdaEquality_alt int_eqEquality dependent_functionElimination isect_memberEquality_alt voidElimination independent_pairFormation universeIsType axiomEquality equalityTransitivity equalitySymmetry isectIsTypeImplies inhabitedIsType functionIsTypeImplies isect_memberFormation_alt addEquality unionElimination equalityElimination productElimination equalityIstype promote_hyp instantiate cumulativity because_Cache functionIsType applyEquality dependent_set_memberEquality_alt productIsType intEquality minusEquality multiplyEquality closedConclusion

Latex:
\mforall{}[n,m:\mBbbZ{}].  \mforall{}[x:\{n..m  +  1\msupminus{}\}  {}\mrightarrow{}  \mBbbR{}].    (rprod(n;m;k.x[k])  \mmember{}  \mBbbR{})



Date html generated: 2019_10_29-AM-10_16_28
Last ObjectModification: 2019_01_14-PM-10_42_36

Theory : reals


Home Index