Step
*
1
of Lemma
rpositive-iff
1. [x] : ℝ
2. rpositive(x)
⊢ ∃n:ℕ+. ∀m:ℕ+. ((n ≤ m)
⇒ (m ≤ (n * (x m))))
BY
{ ((D -1 THEN With ⌜n⌝ (D 0)⋅ THEN Auto)
THEN ((InstLemma `rnonzero-lemma1` [⌜x⌝;⌜n⌝]⋅ THENM InstHyp [⌜m⌝] (-1)⋅)
THENA (Auto THEN (RWO "absval_ifthenelse" 0 THENA Auto) THEN AutoSplit)
)
THEN (RWO "absval_ifthenelse" (-1) THENA Auto)
THEN SplitOnHypITE -1
THEN Auto
THEN Assert ⌜False⌝⋅
THEN Auto) }
1
.....assertion.....
1. x : ℝ
2. n : ℕ+
3. 4 < x n
4. m : ℕ+
5. n ≤ m
6. ∀m:ℕ+. ((n ≤ m)
⇒ (m ≤ (n * |x m|)))
7. m ≤ (n * (-(x m)))
8. ¬0 < x m
⊢ False
Latex:
Latex:
1. [x] : \mBbbR{}
2. rpositive(x)
\mvdash{} \mexists{}n:\mBbbN{}\msupplus{}. \mforall{}m:\mBbbN{}\msupplus{}. ((n \mleq{} m) {}\mRightarrow{} (m \mleq{} (n * (x m))))
By
Latex:
((D -1 THEN With \mkleeneopen{}n\mkleeneclose{} (D 0)\mcdot{} THEN Auto)
THEN ((InstLemma `rnonzero-lemma1` [\mkleeneopen{}x\mkleeneclose{};\mkleeneopen{}n\mkleeneclose{}]\mcdot{} THENM InstHyp [\mkleeneopen{}m\mkleeneclose{}] (-1)\mcdot{})
THENA (Auto THEN (RWO "absval\_ifthenelse" 0 THENA Auto) THEN AutoSplit)
)
THEN (RWO "absval\_ifthenelse" (-1) THENA Auto)
THEN SplitOnHypITE -1
THEN Auto
THEN Assert \mkleeneopen{}False\mkleeneclose{}\mcdot{}
THEN Auto)
Home
Index