Step
*
1
of Lemma
rprod-rminus
.....aux.....
1. n : ℤ
2. m : ℤ
3. x : {n..m + 1-} ⟶ ℝ
4. n ≤ m
5. d : ℤ
⊢ ((n + 0) ≤ m)
⇒ (rprod(n;n + 0;k.-(x[k])) = (r(-1)^0 + 1 * rprod(n;n + 0;k.x[k])))
BY
{ ((Subst' n + 0 ~ n 0 THENA Auto)
THEN Auto
THEN Reduce 0
THEN (RWO "rprod-single" 0 THENA Auto)
THEN RWO "rnexp1" 0
THEN Auto) }
Latex:
Latex:
.....aux.....
1. n : \mBbbZ{}
2. m : \mBbbZ{}
3. x : \{n..m + 1\msupminus{}\} {}\mrightarrow{} \mBbbR{}
4. n \mleq{} m
5. d : \mBbbZ{}
\mvdash{} ((n + 0) \mleq{} m) {}\mRightarrow{} (rprod(n;n + 0;k.-(x[k])) = (r(-1)\^{}0 + 1 * rprod(n;n + 0;k.x[k])))
By
Latex:
((Subst' n + 0 \msim{} n 0 THENA Auto)
THEN Auto
THEN Reduce 0
THEN (RWO "rprod-single" 0 THENA Auto)
THEN RWO "rnexp1" 0
THEN Auto)
Home
Index