Nuprl Lemma : rprod-rminus

n,m:ℤ. ∀x:{n..m 1-} ⟶ ℝ.  rprod(n;m;k.-(x[k])) (r(-1)^(m n) rprod(n;m;k.x[k])) supposing n ≤ m


Proof




Definitions occuring in Statement :  rprod: rprod(n;m;k.x[k]) rnexp: x^k1 req: y rmul: b rminus: -(x) int-to-real: r(n) real: int_seg: {i..j-} uimplies: supposing a so_apply: x[s] le: A ≤ B all: x:A. B[x] function: x:A ⟶ B[x] subtract: m add: m minus: -n natural_number: $n int:
Definitions unfolded in proof :  all: x:A. B[x] uimplies: supposing a uall: [x:A]. B[x] member: t ∈ T nat: implies:  Q false: False ge: i ≥  not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top and: P ∧ Q prop: so_lambda: λ2x.t[x] so_apply: x[s] int_seg: {i..j-} lelt: i ≤ j < k decidable: Dec(P) or: P ∨ Q uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) rprod: rprod(n;m;k.x[k]) bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  bfalse: ff sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b rev_implies:  Q iff: ⇐⇒ Q req_int_terms: t1 ≡ t2
Lemmas referenced :  nat_properties full-omega-unsat intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf istype-less_than req_witness rprod_wf rminus_wf decidable__lt intformnot_wf itermAdd_wf int_formula_prop_not_lemma int_term_value_add_lemma istype-le int_seg_wf rmul_wf rnexp_wf decidable__le int-to-real_wf subtract-1-ge-0 subtract-add-cancel istype-nat subtract_wf itermSubtract_wf int_term_value_subtract_lemma trivial-int-eq1 real_wf add-zero rminus-as-rmul req_functionality rprod-single rmul_functionality req_weakening rnexp1 lt_int_wf eqtt_to_assert assert_of_lt_int eqff_to_assert bool_cases_sqequal subtype_base_sq bool_wf bool_subtype_base assert-bnot iff_weakening_uiff assert_wf less_than_wf int_subtype_base decidable__equal_int intformeq_wf int_formula_prop_eq_lemma itermMultiply_wf itermMinus_wf req-iff-rsub-is-0 req_inversion rnexp-add real_polynomial_null real_term_value_sub_lemma real_term_value_mul_lemma real_term_value_var_lemma real_term_value_minus_lemma real_term_value_const_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt isect_memberFormation_alt cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis setElimination rename intWeakElimination natural_numberEquality independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation_alt lambdaEquality_alt int_eqEquality dependent_functionElimination isect_memberEquality_alt voidElimination sqequalRule independent_pairFormation universeIsType functionIsTypeImplies inhabitedIsType addEquality because_Cache closedConclusion applyEquality dependent_set_memberEquality_alt productElimination unionElimination productIsType minusEquality functionIsType equalityElimination equalityTransitivity equalitySymmetry equalityIstype promote_hyp instantiate cumulativity intEquality

Latex:
\mforall{}n,m:\mBbbZ{}.  \mforall{}x:\{n..m  +  1\msupminus{}\}  {}\mrightarrow{}  \mBbbR{}.
    rprod(n;m;k.-(x[k]))  =  (r(-1)\^{}(m  -  n)  +  1  *  rprod(n;m;k.x[k]))  supposing  n  \mleq{}  m



Date html generated: 2019_10_29-AM-10_17_39
Last ObjectModification: 2019_01_15-PM-01_06_28

Theory : reals


Home Index