Nuprl Lemma : rprod-single

[n:ℤ]. ∀[x:{n..n 1-} ⟶ ℝ].  (rprod(n;n;k.x[k]) x[n])


Proof




Definitions occuring in Statement :  rprod: rprod(n;m;k.x[k]) req: y real: int_seg: {i..j-} uall: [x:A]. B[x] so_apply: x[s] function: x:A ⟶ B[x] add: m natural_number: $n int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T rprod: rprod(n;m;k.x[k]) all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a ifthenelse: if then else fi  not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top prop: bfalse: ff or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b rev_implies:  Q iff: ⇐⇒ Q so_apply: x[s] int_seg: {i..j-} lelt: i ≤ j < k decidable: Dec(P) so_lambda: λ2x.t[x]
Lemmas referenced :  lt_int_wf eqtt_to_assert assert_of_lt_int full-omega-unsat intformless_wf itermVar_wf istype-int int_formula_prop_less_lemma istype-void int_term_value_var_lemma int_formula_prop_wf eqff_to_assert bool_cases_sqequal subtype_base_sq bool_wf bool_subtype_base assert-bnot iff_weakening_uiff assert_wf less_than_wf istype-less_than subtract_wf rmul-identity1 decidable__le intformnot_wf intformle_wf int_formula_prop_not_lemma int_formula_prop_le_lemma decidable__lt itermAdd_wf itermConstant_wf int_term_value_add_lemma int_term_value_constant_lemma istype-le itermSubtract_wf int_term_value_subtract_lemma req_witness rprod_wf int_seg_wf real_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis inhabitedIsType lambdaFormation_alt unionElimination equalityElimination equalityTransitivity equalitySymmetry productElimination independent_isectElimination because_Cache sqequalRule natural_numberEquality approximateComputation independent_functionElimination dependent_pairFormation_alt lambdaEquality_alt int_eqEquality dependent_functionElimination isect_memberEquality_alt voidElimination universeIsType equalityIstype promote_hyp instantiate cumulativity applyEquality dependent_set_memberEquality_alt independent_pairFormation addEquality productIsType functionIsType isectIsTypeImplies

Latex:
\mforall{}[n:\mBbbZ{}].  \mforall{}[x:\{n..n  +  1\msupminus{}\}  {}\mrightarrow{}  \mBbbR{}].    (rprod(n;n;k.x[k])  =  x[n])



Date html generated: 2019_10_29-AM-10_17_11
Last ObjectModification: 2019_01_15-AM-10_00_12

Theory : reals


Home Index