Step
*
1
of Lemma
rprod-split
.....assertion.....
∀d:ℕ
∀[n:ℤ]. ∀[x:{n..(n + d) + 1-} ⟶ ℝ]. ∀[i:ℤ].
rprod(n;n + d;k.x[k]) = (rprod(n;i;k.x[k]) * rprod(i + 1;n + d;k.x[k])) supposing (i ≤ (n + d)) ∧ (n ≤ (i + 1))
BY
{ (InductionOnNat THEN Auto) }
1
1. d : ℤ
2. n : ℤ
3. x : {n..(n + 0) + 1-} ⟶ ℝ
4. i : ℤ
5. i ≤ (n + 0)
6. n ≤ (i + 1)
⊢ rprod(n;n + 0;k.x[k]) = (rprod(n;i;k.x[k]) * rprod(i + 1;n + 0;k.x[k]))
2
1. d : ℤ
2. 0 < d
3. ∀[n:ℤ]. ∀[x:{n..(n + (d - 1)) + 1-} ⟶ ℝ]. ∀[i:ℤ].
rprod(n;n + (d - 1);k.x[k]) = (rprod(n;i;k.x[k]) * rprod(i + 1;n + (d - 1);k.x[k]))
supposing (i ≤ (n + (d - 1))) ∧ (n ≤ (i + 1))
4. n : ℤ
5. x : {n..(n + d) + 1-} ⟶ ℝ
6. i : ℤ
7. i ≤ (n + d)
8. n ≤ (i + 1)
⊢ rprod(n;n + d;k.x[k]) = (rprod(n;i;k.x[k]) * rprod(i + 1;n + d;k.x[k]))
Latex:
Latex:
.....assertion.....
\mforall{}d:\mBbbN{}
\mforall{}[n:\mBbbZ{}]. \mforall{}[x:\{n..(n + d) + 1\msupminus{}\} {}\mrightarrow{} \mBbbR{}]. \mforall{}[i:\mBbbZ{}].
rprod(n;n + d;k.x[k]) = (rprod(n;i;k.x[k]) * rprod(i + 1;n + d;k.x[k]))
supposing (i \mleq{} (n + d)) \mwedge{} (n \mleq{} (i + 1))
By
Latex:
(InductionOnNat THEN Auto)
Home
Index