Nuprl Lemma : rprod-split

[n,m:ℤ]. ∀[x:{n..m 1-} ⟶ ℝ]. ∀[i:ℤ].
  rprod(n;m;k.x[k]) (rprod(n;i;k.x[k]) rprod(i 1;m;k.x[k])) supposing (i ≤ m) ∧ (n ≤ (i 1))


Proof




Definitions occuring in Statement :  rprod: rprod(n;m;k.x[k]) req: y rmul: b real: int_seg: {i..j-} uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s] le: A ≤ B and: P ∧ Q function: x:A ⟶ B[x] add: m natural_number: $n int:
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] member: t ∈ T nat: implies:  Q false: False ge: i ≥  uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top and: P ∧ Q prop: so_lambda: λ2x.t[x] so_apply: x[s] int_seg: {i..j-} lelt: i ≤ j < k decidable: Dec(P) or: P ∨ Q sq_type: SQType(T) guard: {T} uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) req_int_terms: t1 ≡ t2 rprod: rprod(n;m;k.x[k]) bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  bfalse: ff bnot: ¬bb assert: b rev_implies:  Q iff: ⇐⇒ Q subtype_rel: A ⊆B le: A ≤ B subtract: m cand: c∧ B less_than': less_than'(a;b) true: True
Lemmas referenced :  nat_properties full-omega-unsat intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf istype-less_than req_witness rprod_wf int_seg_wf rmul_wf decidable__lt intformnot_wf itermAdd_wf int_formula_prop_not_lemma int_term_value_add_lemma istype-le decidable__le real_wf subtract-1-ge-0 istype-nat add-zero decidable__equal_int subtype_base_sq int_subtype_base intformeq_wf int_formula_prop_eq_lemma rprod-empty int-to-real_wf itermSubtract_wf itermMultiply_wf req-iff-rsub-is-0 req_functionality rprod-single rmul_functionality req_weakening real_polynomial_null real_term_value_sub_lemma real_term_value_var_lemma real_term_value_mul_lemma real_term_value_const_lemma lt_int_wf eqtt_to_assert assert_of_lt_int eqff_to_assert bool_cases_sqequal bool_wf bool_subtype_base assert-bnot iff_weakening_uiff assert_wf less_than_wf int_term_value_subtract_lemma subtract_wf subtype_rel_function int_seg_subtype le_reflexive add-is-int-iff istype-false not-le-2 condition-implies-le add-associates minus-add minus-one-mul add-swap minus-one-mul-top add-mul-special zero-mul zero-add add-commutes le-add-cancel subtype_rel_self rmul_assoc trivial-int-eq1
Rules used in proof :  cut sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis setElimination rename intWeakElimination natural_numberEquality independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation_alt lambdaEquality_alt int_eqEquality dependent_functionElimination isect_memberEquality_alt voidElimination sqequalRule independent_pairFormation universeIsType productElimination isectIsTypeImplies inhabitedIsType functionIsTypeImplies isect_memberFormation_alt addEquality applyEquality dependent_set_memberEquality_alt unionElimination productIsType because_Cache closedConclusion functionIsType instantiate cumulativity intEquality equalityTransitivity equalitySymmetry equalityElimination equalityIstype promote_hyp baseApply baseClosed minusEquality multiplyEquality

Latex:
\mforall{}[n,m:\mBbbZ{}].  \mforall{}[x:\{n..m  +  1\msupminus{}\}  {}\mrightarrow{}  \mBbbR{}].  \mforall{}[i:\mBbbZ{}].
    rprod(n;m;k.x[k])  =  (rprod(n;i;k.x[k])  *  rprod(i  +  1;m;k.x[k]))  supposing  (i  \mleq{}  m)  \mwedge{}  (n  \mleq{}  (i  +  1))



Date html generated: 2019_10_29-AM-10_18_28
Last ObjectModification: 2019_01_15-PM-00_19_28

Theory : reals


Home Index