Step
*
1
1
1
1
1
of Lemma
rroot-abs-property
1. i : {2...}
2. i ≠ 0
3. x : ℝ
4. C : {2...}
5. ∀n:ℕ+. (|rroot-abs(i;x) n| ≤ ((2 * n) * C))
6. n : ℕ+
7. b : ℕ
8. 2^(i - 1) = b ∈ ℕ
9. k : ℕ+
10. n^i = k ∈ ℕ+
11. |iroot(i;b * |x k|)| ≤ ((2 * n) * C)
12. |(n * |x k|) - k * |x n|| ≤ (2 * (k + n))
⊢ |(iroot(i;b * |x k|)^i ÷ 2 * n^i - 1) - |x n|| ≤ ((i * b * C^(i - 1)) + 5)
BY
{ (RepeatFor 2 (MoveToConcl (-1))
THEN GenConclTerms Auto [⌜|x k|⌝;⌜|x n|⌝]⋅
THEN RenameVar `A' (-4)
THEN RenameVar `B' (-2)
THEN Auto
THEN ThinVar `x') }
1
1. i : {2...}
2. i ≠ 0
3. C : {2...}
4. n : ℕ+
5. b : ℕ
6. 2^(i - 1) = b ∈ ℕ
7. k : ℕ+
8. n^i = k ∈ ℕ+
9. A : ℕ
10. B : ℕ
11. |iroot(i;b * A)| ≤ ((2 * n) * C)
12. |(n * A) - k * B| ≤ (2 * (k + n))
⊢ |(iroot(i;b * A)^i ÷ 2 * n^i - 1) - B| ≤ ((i * b * C^(i - 1)) + 5)
Latex:
Latex:
1. i : \{2...\}
2. i \mneq{} 0
3. x : \mBbbR{}
4. C : \{2...\}
5. \mforall{}n:\mBbbN{}\msupplus{}. (|rroot-abs(i;x) n| \mleq{} ((2 * n) * C))
6. n : \mBbbN{}\msupplus{}
7. b : \mBbbN{}
8. 2\^{}(i - 1) = b
9. k : \mBbbN{}\msupplus{}
10. n\^{}i = k
11. |iroot(i;b * |x k|)| \mleq{} ((2 * n) * C)
12. |(n * |x k|) - k * |x n|| \mleq{} (2 * (k + n))
\mvdash{} |(iroot(i;b * |x k|)\^{}i \mdiv{} 2 * n\^{}i - 1) - |x n|| \mleq{} ((i * b * C\^{}(i - 1)) + 5)
By
Latex:
(RepeatFor 2 (MoveToConcl (-1))
THEN GenConclTerms Auto [\mkleeneopen{}|x k|\mkleeneclose{};\mkleeneopen{}|x n|\mkleeneclose{}]\mcdot{}
THEN RenameVar `A' (-4)
THEN RenameVar `B' (-2)
THEN Auto
THEN ThinVar `x')
Home
Index