Nuprl Lemma : rroot-abs-property
∀i:{2...}. ∀x:ℝ.  (rroot-abs(i;x)^i = |x|)
Proof
Definitions occuring in Statement : 
rroot-abs: rroot-abs(i;x), 
rabs: |x|, 
rnexp: x^k1, 
req: x = y, 
real: ℝ, 
int_upper: {i...}, 
all: ∀x:A. B[x], 
natural_number: $n
Definitions unfolded in proof : 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
subtype_rel: A ⊆r B, 
nat: ℕ, 
int_upper: {i...}, 
nequal: a ≠ b ∈ T , 
decidable: Dec(P), 
or: P ∨ Q, 
uimplies: b supposing a, 
not: ¬A, 
implies: P ⇒ Q, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
false: False, 
top: Top, 
and: P ∧ Q, 
prop: ℙ, 
nat_plus: ℕ+, 
int_nzero: ℤ-o, 
true: True, 
sq_type: SQType(T), 
guard: {T}, 
so_lambda: λ2x.t[x], 
real: ℝ, 
so_apply: x[s], 
le: A ≤ B, 
less_than': less_than'(a;b), 
uiff: uiff(P;Q), 
rnexp: x^k1, 
has-value: (a)↓, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
bnot: ¬bb, 
assert: ↑b, 
reg-seq-nexp: reg-seq-nexp(x;k), 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
bdd-diff: bdd-diff(f;g), 
ge: i ≥ j , 
rroot-abs: rroot-abs(i;x), 
squash: ↓T, 
sq_stable: SqStable(P), 
regular-int-seq: k-regular-seq(f), 
less_than: a < b, 
label: ...$L... t, 
rev_uimplies: rev_uimplies(P;Q), 
subtract: n - m, 
cand: A c∧ B
Lemmas referenced : 
canon-bnd_wf, 
rroot-abs_wf, 
subtract_wf, 
int_upper_properties, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermSubtract_wf, 
itermVar_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_subtract_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
istype-le, 
divide_wfa, 
exp_wf2, 
exp_wf3, 
subtype_base_sq, 
int_subtype_base, 
nequal_wf, 
add_nat_plus, 
multiply_nat_wf, 
add_nat_wf, 
divide_wf, 
exp_wf4, 
subtype_rel_set, 
int_upper_wf, 
nat_wf, 
nat_plus_wf, 
le_wf, 
absval_wf, 
istype-int_upper, 
upper_subtype_nat, 
istype-false, 
exp_wf_nat_plus, 
decidable__lt, 
intformless_wf, 
int_formula_prop_less_lemma, 
istype-less_than, 
nat_plus_properties, 
add-is-int-iff, 
multiply-is-int-iff, 
itermAdd_wf, 
itermMultiply_wf, 
intformeq_wf, 
int_term_value_add_lemma, 
int_term_value_mul_lemma, 
int_formula_prop_eq_lemma, 
false_wf, 
req-iff-bdd-diff, 
rnexp_wf, 
rabs_wf, 
value-type-has-value, 
set-value-type, 
int-value-type, 
eq_int_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
eqff_to_assert, 
bool_cases_sqequal, 
bool_wf, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_int, 
canonical-bound_wf, 
real_wf, 
accelerate_wf, 
reg-seq-nexp_wf, 
bdd-diff_functionality, 
accelerate-bdd-diff, 
bdd-diff_weakening, 
exp-fastexp, 
le_witness_for_triv, 
nat_properties, 
rabs-approx, 
exp_preserves_lt, 
nat_plus_subtype_nat, 
less_than_wf, 
squash_wf, 
true_wf, 
exp-zero, 
subtype_rel_self, 
iff_weakening_equal, 
fastexp_wf, 
iroot_wf, 
mul_bounds_1a, 
sq_stable__regular-int-seq, 
iroot-property, 
exp-positive, 
absval_unfold, 
lt_int_wf, 
assert_of_lt_int, 
istype-top, 
iff_weakening_uiff, 
assert_wf, 
mul_cancel_in_le, 
absval_mul, 
exp_step, 
set_subtype_base, 
decidable__equal_int, 
int_nzero_wf, 
exp-of-mul, 
istype-nat, 
mul_preserves_le, 
le_functionality, 
le_weakening, 
int-triangle-inequality, 
mul_nzero, 
nat_plus_inc_int_nzero, 
mul-associates, 
mul-distributes, 
minus-one-mul, 
mul-swap, 
mul-commutes, 
add-commutes, 
add-associates, 
add-swap, 
add-mul-special, 
zero-mul, 
zero-add, 
absval_nat_plus, 
one-mul, 
div_rem_sum2, 
rem_bounds_absval, 
sq_stable__less_than, 
itermMinus_wf, 
int_term_value_minus_lemma, 
add_functionality_wrt_le, 
exp-difference-inequality, 
not-lt-2, 
not-equal-2, 
le-add-cancel, 
subtract-is-int-iff, 
exp-one, 
mul_bounds_1b, 
mul_nat_plus, 
exp_preserves_le, 
multiply_functionality_wrt_le, 
absval_pos, 
absval_sym, 
sq_stable__le, 
le_weakening2
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
dependent_functionElimination, 
hypothesisEquality, 
hypothesis, 
applyEquality, 
because_Cache, 
sqequalRule, 
dependent_set_memberEquality_alt, 
setElimination, 
rename, 
natural_numberEquality, 
unionElimination, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation_alt, 
lambdaEquality_alt, 
int_eqEquality, 
isect_memberEquality_alt, 
voidElimination, 
independent_pairFormation, 
universeIsType, 
addEquality, 
multiplyEquality, 
lambdaFormation_alt, 
instantiate, 
cumulativity, 
intEquality, 
equalityTransitivity, 
equalitySymmetry, 
equalityIstype, 
baseClosed, 
sqequalBase, 
functionEquality, 
inhabitedIsType, 
applyLambdaEquality, 
pointwiseFunctionality, 
promote_hyp, 
baseApply, 
closedConclusion, 
productElimination, 
callbyvalueReduce, 
equalityElimination, 
setEquality, 
functionIsType, 
imageElimination, 
imageMemberEquality, 
universeEquality, 
productIsType, 
minusEquality, 
lessCases, 
isect_memberFormation_alt, 
axiomSqEquality, 
isectIsTypeImplies, 
divideEquality, 
equalityIsType4, 
remainderEquality, 
hyp_replacement, 
equalityIsType1
Latex:
\mforall{}i:\{2...\}.  \mforall{}x:\mBbbR{}.    (rroot-abs(i;x)\^{}i  =  |x|)
 Date html generated: 
2019_10_30-AM-07_56_17
 Last ObjectModification: 
2019_10_10-AM-10_22_50
Theory : reals
Home
Index