Nuprl Lemma : rroot-abs-property

i:{2...}. ∀x:ℝ.  (rroot-abs(i;x)^i |x|)


Proof




Definitions occuring in Statement :  rroot-abs: rroot-abs(i;x) rabs: |x| rnexp: x^k1 req: y real: int_upper: {i...} all: x:A. B[x] natural_number: $n
Definitions unfolded in proof :  member: t ∈ T uall: [x:A]. B[x] all: x:A. B[x] subtype_rel: A ⊆B nat: int_upper: {i...} nequal: a ≠ b ∈  decidable: Dec(P) or: P ∨ Q uimplies: supposing a not: ¬A implies:  Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top and: P ∧ Q prop: nat_plus: + int_nzero: -o true: True sq_type: SQType(T) guard: {T} so_lambda: λ2x.t[x] real: so_apply: x[s] le: A ≤ B less_than': less_than'(a;b) uiff: uiff(P;Q) rnexp: x^k1 has-value: (a)↓ bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  bfalse: ff bnot: ¬bb assert: b reg-seq-nexp: reg-seq-nexp(x;k) iff: ⇐⇒ Q rev_implies:  Q bdd-diff: bdd-diff(f;g) ge: i ≥  rroot-abs: rroot-abs(i;x) squash: T sq_stable: SqStable(P) regular-int-seq: k-regular-seq(f) less_than: a < b label: ...$L... t rev_uimplies: rev_uimplies(P;Q) subtract: m cand: c∧ B
Lemmas referenced :  canon-bnd_wf rroot-abs_wf subtract_wf int_upper_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermSubtract_wf itermVar_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_subtract_lemma int_term_value_var_lemma int_formula_prop_wf istype-le divide_wfa exp_wf2 exp_wf3 subtype_base_sq int_subtype_base nequal_wf add_nat_plus multiply_nat_wf add_nat_wf divide_wf exp_wf4 subtype_rel_set int_upper_wf nat_wf nat_plus_wf le_wf absval_wf istype-int_upper upper_subtype_nat istype-false exp_wf_nat_plus decidable__lt intformless_wf int_formula_prop_less_lemma istype-less_than nat_plus_properties add-is-int-iff multiply-is-int-iff itermAdd_wf itermMultiply_wf intformeq_wf int_term_value_add_lemma int_term_value_mul_lemma int_formula_prop_eq_lemma false_wf req-iff-bdd-diff rnexp_wf rabs_wf value-type-has-value set-value-type int-value-type eq_int_wf eqtt_to_assert assert_of_eq_int eqff_to_assert bool_cases_sqequal bool_wf bool_subtype_base assert-bnot neg_assert_of_eq_int canonical-bound_wf real_wf accelerate_wf reg-seq-nexp_wf bdd-diff_functionality accelerate-bdd-diff bdd-diff_weakening exp-fastexp le_witness_for_triv nat_properties rabs-approx exp_preserves_lt nat_plus_subtype_nat less_than_wf squash_wf true_wf exp-zero subtype_rel_self iff_weakening_equal fastexp_wf iroot_wf mul_bounds_1a sq_stable__regular-int-seq iroot-property exp-positive absval_unfold lt_int_wf assert_of_lt_int istype-top iff_weakening_uiff assert_wf mul_cancel_in_le absval_mul exp_step set_subtype_base decidable__equal_int int_nzero_wf exp-of-mul istype-nat mul_preserves_le le_functionality le_weakening int-triangle-inequality mul_nzero nat_plus_inc_int_nzero mul-associates mul-distributes minus-one-mul mul-swap mul-commutes add-commutes add-associates add-swap add-mul-special zero-mul zero-add absval_nat_plus one-mul div_rem_sum2 rem_bounds_absval sq_stable__less_than itermMinus_wf int_term_value_minus_lemma add_functionality_wrt_le exp-difference-inequality not-lt-2 not-equal-2 le-add-cancel subtract-is-int-iff exp-one mul_bounds_1b mul_nat_plus exp_preserves_le multiply_functionality_wrt_le absval_pos absval_sym sq_stable__le le_weakening2
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin dependent_functionElimination hypothesisEquality hypothesis applyEquality because_Cache sqequalRule dependent_set_memberEquality_alt setElimination rename natural_numberEquality unionElimination independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation_alt lambdaEquality_alt int_eqEquality isect_memberEquality_alt voidElimination independent_pairFormation universeIsType addEquality multiplyEquality lambdaFormation_alt instantiate cumulativity intEquality equalityTransitivity equalitySymmetry equalityIstype baseClosed sqequalBase functionEquality inhabitedIsType applyLambdaEquality pointwiseFunctionality promote_hyp baseApply closedConclusion productElimination callbyvalueReduce equalityElimination setEquality functionIsType imageElimination imageMemberEquality universeEquality productIsType minusEquality lessCases isect_memberFormation_alt axiomSqEquality isectIsTypeImplies divideEquality equalityIsType4 remainderEquality hyp_replacement equalityIsType1

Latex:
\mforall{}i:\{2...\}.  \mforall{}x:\mBbbR{}.    (rroot-abs(i;x)\^{}i  =  |x|)



Date html generated: 2019_10_30-AM-07_56_17
Last ObjectModification: 2019_10_10-AM-10_22_50

Theory : reals


Home Index