Nuprl Lemma : exp-of-mul
∀[x,y:ℤ]. ∀[n:ℕ].  ((x * y)^n = (x^n * y^n) ∈ ℤ)
Proof
Definitions occuring in Statement : 
exp: i^n
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
multiply: n * m
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uiff: uiff(P;Q)
, 
guard: {T}
, 
sq_type: SQType(T)
, 
or: P ∨ Q
, 
decidable: Dec(P)
, 
nat_plus: ℕ+
, 
less_than': less_than'(a;b)
, 
le: A ≤ B
, 
primtailrec: primtailrec(n;i;b;f)
, 
primrec: primrec(n;b;c)
, 
exp: i^n
, 
prop: ℙ
, 
and: P ∧ Q
, 
top: Top
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
not: ¬A
, 
uimplies: b supposing a
, 
ge: i ≥ j 
, 
false: False
, 
implies: P 
⇒ Q
, 
nat: ℕ
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
exp_step, 
false_wf, 
int_term_value_mul_lemma, 
int_formula_prop_eq_lemma, 
itermMultiply_wf, 
intformeq_wf, 
multiply-is-int-iff, 
decidable__equal_int, 
int_subtype_base, 
subtype_base_sq, 
int_formula_prop_not_lemma, 
intformnot_wf, 
decidable__lt, 
istype-nat, 
subtract-1-ge-0, 
istype-le, 
exp_wf2, 
istype-less_than, 
ge_wf, 
int_formula_prop_wf, 
int_formula_prop_less_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
istype-void, 
int_formula_prop_and_lemma, 
istype-int, 
intformless_wf, 
itermVar_wf, 
itermConstant_wf, 
intformle_wf, 
intformand_wf, 
full-omega-unsat, 
nat_properties
Rules used in proof : 
productElimination, 
baseClosed, 
closedConclusion, 
baseApply, 
promote_hyp, 
pointwiseFunctionality, 
equalitySymmetry, 
equalityTransitivity, 
intEquality, 
cumulativity, 
instantiate, 
unionElimination, 
because_Cache, 
Error :isectIsTypeImplies, 
Error :dependent_set_memberEquality_alt, 
multiplyEquality, 
Error :inhabitedIsType, 
Error :functionIsTypeImplies, 
axiomEquality, 
Error :universeIsType, 
independent_pairFormation, 
sqequalRule, 
voidElimination, 
Error :isect_memberEquality_alt, 
dependent_functionElimination, 
int_eqEquality, 
Error :lambdaEquality_alt, 
Error :dependent_pairFormation_alt, 
independent_functionElimination, 
approximateComputation, 
independent_isectElimination, 
natural_numberEquality, 
Error :lambdaFormation_alt, 
intWeakElimination, 
rename, 
setElimination, 
hypothesis, 
hypothesisEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
cut, 
introduction, 
Error :isect_memberFormation_alt, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[x,y:\mBbbZ{}].  \mforall{}[n:\mBbbN{}].    ((x  *  y)\^{}n  =  (x\^{}n  *  y\^{}n))
Date html generated:
2019_06_20-PM-02_26_26
Last ObjectModification:
2019_06_19-PM-00_11_31
Theory : num_thy_1
Home
Index