Nuprl Lemma : exp-of-mul

[x,y:ℤ]. ∀[n:ℕ].  ((x y)^n (x^n y^n) ∈ ℤ)


Proof




Definitions occuring in Statement :  exp: i^n nat: uall: [x:A]. B[x] multiply: m int: equal: t ∈ T
Definitions unfolded in proof :  uiff: uiff(P;Q) guard: {T} sq_type: SQType(T) or: P ∨ Q decidable: Dec(P) nat_plus: + less_than': less_than'(a;b) le: A ≤ B primtailrec: primtailrec(n;i;b;f) primrec: primrec(n;b;c) exp: i^n prop: and: P ∧ Q top: Top all: x:A. B[x] exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) not: ¬A uimplies: supposing a ge: i ≥  false: False implies:  Q nat: member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  exp_step false_wf int_term_value_mul_lemma int_formula_prop_eq_lemma itermMultiply_wf intformeq_wf multiply-is-int-iff decidable__equal_int int_subtype_base subtype_base_sq int_formula_prop_not_lemma intformnot_wf decidable__lt istype-nat subtract-1-ge-0 istype-le exp_wf2 istype-less_than ge_wf int_formula_prop_wf int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma istype-void int_formula_prop_and_lemma istype-int intformless_wf itermVar_wf itermConstant_wf intformle_wf intformand_wf full-omega-unsat nat_properties
Rules used in proof :  productElimination baseClosed closedConclusion baseApply promote_hyp pointwiseFunctionality equalitySymmetry equalityTransitivity intEquality cumulativity instantiate unionElimination because_Cache Error :isectIsTypeImplies,  Error :dependent_set_memberEquality_alt,  multiplyEquality Error :inhabitedIsType,  Error :functionIsTypeImplies,  axiomEquality Error :universeIsType,  independent_pairFormation sqequalRule voidElimination Error :isect_memberEquality_alt,  dependent_functionElimination int_eqEquality Error :lambdaEquality_alt,  Error :dependent_pairFormation_alt,  independent_functionElimination approximateComputation independent_isectElimination natural_numberEquality Error :lambdaFormation_alt,  intWeakElimination rename setElimination hypothesis hypothesisEquality thin isectElimination sqequalHypSubstitution extract_by_obid cut introduction Error :isect_memberFormation_alt,  sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[x,y:\mBbbZ{}].  \mforall{}[n:\mBbbN{}].    ((x  *  y)\^{}n  =  (x\^{}n  *  y\^{}n))



Date html generated: 2019_06_20-PM-02_26_26
Last ObjectModification: 2019_06_19-PM-00_11_31

Theory : num_thy_1


Home Index