Nuprl Lemma : exp-difference-inequality
∀[n:ℕ+]. ∀[a,b:ℕ].  (((a + b)^n - a^n) ≤ (n * b * (a + b)^(n - 1)))
Proof
Definitions occuring in Statement : 
exp: i^n
, 
nat_plus: ℕ+
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
le: A ≤ B
, 
multiply: n * m
, 
subtract: n - m
, 
add: n + m
, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
le: A ≤ B
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
nat: ℕ
, 
true: True
, 
nat_plus: ℕ+
, 
ge: i ≥ j 
, 
all: ∀x:A. B[x]
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
top: Top
, 
prop: ℙ
, 
squash: ↓T
, 
less_than': less_than'(a;b)
, 
guard: {T}
, 
so_lambda: λ2x.t[x]
, 
int_seg: {i..j-}
, 
int_iseg: {i...j}
, 
so_apply: x[s]
, 
lelt: i ≤ j < k
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
sq_type: SQType(T)
, 
subtract: n - m
, 
uiff: uiff(P;Q)
, 
nequal: a ≠ b ∈ T 
, 
assert: ↑b
, 
bnot: ¬bb
, 
bfalse: ff
, 
ifthenelse: if b then t else f fi 
, 
bor: p ∨bq
, 
btrue: tt
, 
it: ⋅
, 
unit: Unit
, 
bool: 𝔹
, 
ycomb: Y
, 
choose: choose(n;i)
Lemmas referenced : 
binomial-int, 
nat_plus_subtype_nat, 
le_witness_for_triv, 
nat_wf, 
nat_plus_wf, 
exp_wf2, 
subtract_wf, 
nat_properties, 
nat_plus_properties, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermSubtract_wf, 
itermVar_wf, 
intformless_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_subtract_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
le_wf, 
sum_wf, 
add_nat_wf, 
istype-false, 
le_weakening2, 
subtract-add-cancel, 
decidable__lt, 
intformeq_wf, 
itermAdd_wf, 
int_formula_prop_eq_lemma, 
int_term_value_add_lemma, 
choose_wf, 
subtype_rel_sets, 
lelt_wf, 
istype-less_than, 
int_seg_subtype_nat, 
subtract_nat_wf, 
int_seg_properties, 
int_seg_wf, 
iff_weakening_equal, 
sum_scalar_mult, 
squash_wf, 
true_wf, 
subtype_rel_self, 
subtype_base_sq, 
int_subtype_base, 
satisfiable-full-omega-tt, 
less_than_wf, 
le-add-cancel, 
add-zero, 
add-associates, 
add_functionality_wrt_le, 
add-commutes, 
minus-one-mul-top, 
zero-add, 
minus-one-mul, 
minus-add, 
condition-implies-le, 
less-iff-le, 
not-lt-2, 
false_wf, 
equal_wf, 
sum_split1, 
int_term_value_mul_lemma, 
itermMultiply_wf, 
set_subtype_base, 
exp0_lemma, 
decidable__equal_int, 
add-subtract-cancel, 
neg_assert_of_eq_int, 
assert-bnot, 
bool_subtype_base, 
bool_cases_sqequal, 
eqff_to_assert, 
assert_of_eq_int, 
eqtt_to_assert, 
bool_wf, 
eq_int_wf, 
mul-swap, 
add-swap, 
exp_step, 
sum_le, 
choose-inequality1, 
exp_wf4, 
mul_bounds_1a, 
mul_preserves_le, 
multiply-is-int-iff
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
because_Cache, 
hypothesisEquality, 
applyEquality, 
hypothesis, 
sqequalRule, 
productElimination, 
equalityTransitivity, 
equalitySymmetry, 
independent_isectElimination, 
inhabitedIsType, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
universeIsType, 
setElimination, 
rename, 
natural_numberEquality, 
multiplyEquality, 
dependent_set_memberEquality_alt, 
dependent_functionElimination, 
unionElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation_alt, 
lambdaEquality_alt, 
int_eqEquality, 
voidElimination, 
independent_pairFormation, 
imageElimination, 
addEquality, 
lambdaFormation_alt, 
applyLambdaEquality, 
equalityIsType1, 
intEquality, 
closedConclusion, 
productEquality, 
setIsType, 
productIsType, 
imageMemberEquality, 
baseClosed, 
instantiate, 
universeEquality, 
cumulativity, 
computeAll, 
dependent_pairFormation, 
setEquality, 
minusEquality, 
voidEquality, 
isect_memberEquality, 
lambdaEquality, 
lambdaFormation, 
dependent_set_memberEquality, 
promote_hyp, 
equalityElimination, 
functionIsType, 
baseApply, 
pointwiseFunctionality, 
hyp_replacement
Latex:
\mforall{}[n:\mBbbN{}\msupplus{}].  \mforall{}[a,b:\mBbbN{}].    (((a  +  b)\^{}n  -  a\^{}n)  \mleq{}  (n  *  b  *  (a  +  b)\^{}(n  -  1)))
Date html generated:
2019_10_15-AM-11_23_39
Last ObjectModification:
2018_10_16-PM-03_16_36
Theory : general
Home
Index