Nuprl Lemma : exp-difference-inequality

[n:ℕ+]. ∀[a,b:ℕ].  (((a b)^n a^n) ≤ (n (a b)^(n 1)))


Proof




Definitions occuring in Statement :  exp: i^n nat_plus: + nat: uall: [x:A]. B[x] le: A ≤ B multiply: m subtract: m add: m natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B le: A ≤ B and: P ∧ Q uimplies: supposing a nat: true: True nat_plus: + ge: i ≥  all: x:A. B[x] decidable: Dec(P) or: P ∨ Q not: ¬A implies:  Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top prop: squash: T less_than': less_than'(a;b) guard: {T} so_lambda: λ2x.t[x] int_seg: {i..j-} int_iseg: {i...j} so_apply: x[s] lelt: i ≤ j < k iff: ⇐⇒ Q rev_implies:  Q sq_type: SQType(T) subtract: m uiff: uiff(P;Q) nequal: a ≠ b ∈  assert: b bnot: ¬bb bfalse: ff ifthenelse: if then else fi  bor: p ∨bq btrue: tt it: unit: Unit bool: 𝔹 ycomb: Y choose: choose(n;i)
Lemmas referenced :  binomial-int nat_plus_subtype_nat le_witness_for_triv nat_wf nat_plus_wf exp_wf2 subtract_wf nat_properties nat_plus_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermSubtract_wf itermVar_wf intformless_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_subtract_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf le_wf sum_wf add_nat_wf istype-false le_weakening2 subtract-add-cancel decidable__lt intformeq_wf itermAdd_wf int_formula_prop_eq_lemma int_term_value_add_lemma choose_wf subtype_rel_sets lelt_wf istype-less_than int_seg_subtype_nat subtract_nat_wf int_seg_properties int_seg_wf iff_weakening_equal sum_scalar_mult squash_wf true_wf subtype_rel_self subtype_base_sq int_subtype_base satisfiable-full-omega-tt less_than_wf le-add-cancel add-zero add-associates add_functionality_wrt_le add-commutes minus-one-mul-top zero-add minus-one-mul minus-add condition-implies-le less-iff-le not-lt-2 false_wf equal_wf sum_split1 int_term_value_mul_lemma itermMultiply_wf set_subtype_base exp0_lemma decidable__equal_int add-subtract-cancel neg_assert_of_eq_int assert-bnot bool_subtype_base bool_cases_sqequal eqff_to_assert assert_of_eq_int eqtt_to_assert bool_wf eq_int_wf mul-swap add-swap exp_step sum_le choose-inequality1 exp_wf4 mul_bounds_1a mul_preserves_le multiply-is-int-iff
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin because_Cache hypothesisEquality applyEquality hypothesis sqequalRule productElimination equalityTransitivity equalitySymmetry independent_isectElimination inhabitedIsType isect_memberEquality_alt isectIsTypeImplies universeIsType setElimination rename natural_numberEquality multiplyEquality dependent_set_memberEquality_alt dependent_functionElimination unionElimination approximateComputation independent_functionElimination dependent_pairFormation_alt lambdaEquality_alt int_eqEquality voidElimination independent_pairFormation imageElimination addEquality lambdaFormation_alt applyLambdaEquality equalityIsType1 intEquality closedConclusion productEquality setIsType productIsType imageMemberEquality baseClosed instantiate universeEquality cumulativity computeAll dependent_pairFormation setEquality minusEquality voidEquality isect_memberEquality lambdaEquality lambdaFormation dependent_set_memberEquality promote_hyp equalityElimination functionIsType baseApply pointwiseFunctionality hyp_replacement

Latex:
\mforall{}[n:\mBbbN{}\msupplus{}].  \mforall{}[a,b:\mBbbN{}].    (((a  +  b)\^{}n  -  a\^{}n)  \mleq{}  (n  *  b  *  (a  +  b)\^{}(n  -  1)))



Date html generated: 2019_10_15-AM-11_23_39
Last ObjectModification: 2018_10_16-PM-03_16_36

Theory : general


Home Index