Nuprl Lemma : choose-inequality1
∀n:ℕ. ∀i:ℕn.  (choose(n;i) ≤ (n * choose(n - 1;i)))
Proof
Definitions occuring in Statement : 
int_seg: {i..j-}, 
nat: ℕ, 
le: A ≤ B, 
all: ∀x:A. B[x], 
multiply: n * m, 
subtract: n - m, 
natural_number: $n, 
choose: choose(n;i)
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
subtype_rel: A ⊆r B, 
nat: ℕ, 
guard: {T}, 
int_seg: {i..j-}, 
ge: i ≥ j , 
lelt: i ≤ j < k, 
and: P ∧ Q, 
decidable: Dec(P), 
or: P ∨ Q, 
uimplies: b supposing a, 
not: ¬A, 
implies: P ⇒ Q, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
false: False, 
top: Top, 
prop: ℙ, 
int_iseg: {i...j}, 
cand: A c∧ B, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
le: A ≤ B, 
less_than': less_than'(a;b), 
less_than: a < b, 
squash: ↓T, 
uiff: uiff(P;Q), 
sq_type: SQType(T), 
nat_plus: ℕ+, 
subtract: n - m, 
true: True, 
iff: P ⇐⇒ Q
Lemmas referenced : 
decidable__le, 
choose_wf, 
subtract_wf, 
int_seg_properties, 
nat_properties, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermSubtract_wf, 
itermVar_wf, 
intformless_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_subtract_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
istype-le, 
decidable__lt, 
itermMultiply_wf, 
int_term_value_mul_lemma, 
int_seg_wf, 
istype-nat, 
mul_preserves_lt, 
subtype_rel_sets, 
lelt_wf, 
le_wf, 
istype-less_than, 
mul_nat_plus, 
fact_wf, 
int_seg_subtype_nat, 
istype-false, 
choose-formula, 
subtype_base_sq, 
int_subtype_base, 
decidable__equal_int, 
multiply-is-int-iff, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
false_wf, 
nat_plus_wf, 
set_subtype_base, 
less_than_wf, 
nat_plus_properties, 
fact_unroll_1, 
add-associates, 
minus-one-mul, 
add-swap, 
add-commutes, 
itermAdd_wf, 
int_term_value_add_lemma, 
squash_wf, 
true_wf, 
subtype_rel_self, 
iff_weakening_equal, 
mul_preserves_le, 
nat_plus_subtype_nat
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
isectElimination, 
hypothesisEquality, 
applyEquality, 
because_Cache, 
hypothesis, 
sqequalRule, 
multiplyEquality, 
dependent_set_memberEquality_alt, 
setElimination, 
rename, 
natural_numberEquality, 
productElimination, 
unionElimination, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation_alt, 
lambdaEquality_alt, 
int_eqEquality, 
isect_memberEquality_alt, 
voidElimination, 
independent_pairFormation, 
universeIsType, 
productIsType, 
intEquality, 
closedConclusion, 
productEquality, 
setIsType, 
applyLambdaEquality, 
inhabitedIsType, 
equalityTransitivity, 
equalitySymmetry, 
instantiate, 
cumulativity, 
imageElimination, 
pointwiseFunctionality, 
promote_hyp, 
baseApply, 
baseClosed, 
minusEquality, 
addEquality, 
imageMemberEquality, 
universeEquality
Latex:
\mforall{}n:\mBbbN{}.  \mforall{}i:\mBbbN{}n.    (choose(n;i)  \mleq{}  (n  *  choose(n  -  1;i)))
Date html generated:
2019_10_15-AM-11_21_27
Last ObjectModification:
2018_10_18-PM-11_44_26
Theory : general
Home
Index