Nuprl Lemma : choose-inequality1

n:ℕ. ∀i:ℕn.  (choose(n;i) ≤ (n choose(n 1;i)))


Proof




Definitions occuring in Statement :  int_seg: {i..j-} nat: le: A ≤ B all: x:A. B[x] multiply: m subtract: m natural_number: $n choose: choose(n;i)
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] subtype_rel: A ⊆B nat: guard: {T} int_seg: {i..j-} ge: i ≥  lelt: i ≤ j < k and: P ∧ Q decidable: Dec(P) or: P ∨ Q uimplies: supposing a not: ¬A implies:  Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top prop: int_iseg: {i...j} cand: c∧ B so_lambda: λ2x.t[x] so_apply: x[s] le: A ≤ B less_than': less_than'(a;b) less_than: a < b squash: T uiff: uiff(P;Q) sq_type: SQType(T) nat_plus: + subtract: m true: True iff: ⇐⇒ Q
Lemmas referenced :  decidable__le choose_wf subtract_wf int_seg_properties nat_properties full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermSubtract_wf itermVar_wf intformless_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_subtract_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf istype-le decidable__lt itermMultiply_wf int_term_value_mul_lemma int_seg_wf istype-nat mul_preserves_lt subtype_rel_sets lelt_wf le_wf istype-less_than mul_nat_plus fact_wf int_seg_subtype_nat istype-false choose-formula subtype_base_sq int_subtype_base decidable__equal_int multiply-is-int-iff intformeq_wf int_formula_prop_eq_lemma false_wf nat_plus_wf set_subtype_base less_than_wf nat_plus_properties fact_unroll_1 add-associates minus-one-mul add-swap add-commutes itermAdd_wf int_term_value_add_lemma squash_wf true_wf subtype_rel_self iff_weakening_equal mul_preserves_le nat_plus_subtype_nat
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin isectElimination hypothesisEquality applyEquality because_Cache hypothesis sqequalRule multiplyEquality dependent_set_memberEquality_alt setElimination rename natural_numberEquality productElimination unionElimination independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation_alt lambdaEquality_alt int_eqEquality isect_memberEquality_alt voidElimination independent_pairFormation universeIsType productIsType intEquality closedConclusion productEquality setIsType applyLambdaEquality inhabitedIsType equalityTransitivity equalitySymmetry instantiate cumulativity imageElimination pointwiseFunctionality promote_hyp baseApply baseClosed minusEquality addEquality imageMemberEquality universeEquality

Latex:
\mforall{}n:\mBbbN{}.  \mforall{}i:\mBbbN{}n.    (choose(n;i)  \mleq{}  (n  *  choose(n  -  1;i)))



Date html generated: 2019_10_15-AM-11_21_27
Last ObjectModification: 2018_10_18-PM-11_44_26

Theory : general


Home Index