Nuprl Lemma : choose-formula

[n,m:ℕ].  (choose(n;m) (m)! (n m)!) (n)! ∈ ℤ supposing m ≤ n


This theorem is one of freek's list of 100 theorems



Proof




Definitions occuring in Statement :  fact: (n)! nat: uimplies: supposing a uall: [x:A]. B[x] le: A ≤ B multiply: m subtract: m int: equal: t ∈ T choose: choose(n;i)
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] nat: implies:  Q false: False ge: i ≥  uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top and: P ∧ Q prop: guard: {T} int_seg: {i..j-} lelt: i ≤ j < k decidable: Dec(P) or: P ∨ Q subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] sq_type: SQType(T) choose: choose(n;i) ycomb: Y bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) bor: p ∨bq ifthenelse: if then else fi  subtract: m bfalse: ff bnot: ¬bb assert: b le: A ≤ B less_than': less_than'(a;b) int_upper: {i...} nequal: a ≠ b ∈  nat_plus: + rev_implies:  Q iff: ⇐⇒ Q true: True cand: c∧ B int_iseg: {i...j} squash: T
Lemmas referenced :  nat_properties full-omega-unsat intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf istype-less_than int_seg_properties int_seg_wf subtract-1-ge-0 decidable__equal_int subtract_wf subtype_base_sq set_subtype_base int_subtype_base intformnot_wf intformeq_wf itermSubtract_wf int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_subtract_lemma decidable__le decidable__lt istype-le subtype_rel_self istype-nat eq_int_wf eqtt_to_assert assert_of_eq_int minus-zero mul-commutes fact0_redex_lemma one-mul fact_wf itermAdd_wf int_term_value_add_lemma add-zero itermMultiply_wf int_term_value_mul_lemma eqff_to_assert le_wf bool_subtype_base bool_cases_sqequal bool_wf assert-bnot neg_assert_of_eq_int upper_subtype_nat istype-false nequal-le-implies zero-add int_upper_properties minus-one-mul add-mul-special zero-mul nat_plus_wf equal-wf-T-base satisfiable-full-omega-tt fact_unroll_1 minus-minus minus-add add-swap add-commutes minus-one-mul-top int_upper_wf mul-associates int_term_value_minus_lemma itermMinus_wf mul-distributes-right nat_wf add-associates add-is-int-iff iff_weakening_equal choose_wf mul_add_distrib true_wf squash_wf equal_wf mul-swap mul-distributes istype-universe add_functionality_wrt_eq
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut thin lambdaFormation_alt extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis setElimination rename intWeakElimination natural_numberEquality independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation_alt lambdaEquality_alt int_eqEquality dependent_functionElimination isect_memberEquality_alt voidElimination sqequalRule independent_pairFormation universeIsType axiomEquality isectIsTypeImplies inhabitedIsType functionIsTypeImplies productElimination because_Cache unionElimination applyEquality instantiate equalityTransitivity equalitySymmetry applyLambdaEquality dependent_set_memberEquality_alt productIsType hypothesis_subsumption equalityElimination cumulativity intEquality multiplyEquality addEquality closedConclusion equalityIsType4 baseApply baseClosed promote_hyp equalityIsType1 minusEquality dependent_set_memberEquality computeAll voidEquality isect_memberEquality lambdaEquality dependent_pairFormation lambdaFormation imageMemberEquality productEquality universeEquality imageElimination

Latex:
\mforall{}[n,m:\mBbbN{}].    (choose(n;m)  *  (m)!  *  (n  -  m)!)  =  (n)!  supposing  m  \mleq{}  n



Date html generated: 2019_10_15-AM-11_21_10
Last ObjectModification: 2018_10_18-PM-11_44_54

Theory : general


Home Index