Nuprl Lemma : binomial-int
∀[a,b:ℤ]. ∀[n:ℕ].  ((a + b)^n = Σ(choose(n;i) * a^i * b^(n - i) | i < n + 1) ∈ ℤ)
Proof
Definitions occuring in Statement : 
exp: i^n
, 
sum: Σ(f[x] | x < k)
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
multiply: n * m
, 
subtract: n - m
, 
add: n + m
, 
natural_number: $n
, 
int: ℤ
, 
equal: s = t ∈ T
, 
choose: choose(n;i)
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
integ_dom: IntegDom{i}
, 
int_ring: ℤ-rng
, 
rng_car: |r|
, 
pi1: fst(t)
, 
squash: ↓T
, 
prop: ℙ
, 
crng: CRng
, 
rng: Rng
, 
nat: ℕ
, 
so_lambda: λ2x.t[x]
, 
int_seg: {i..j-}
, 
int_iseg: {i...j}
, 
so_apply: x[s]
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
lelt: i ≤ j < k
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
guard: {T}
, 
ge: i ≥ j 
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
not: ¬A
, 
top: Top
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
true: True
, 
iff: P 
⇐⇒ Q
, 
rng_plus: +r
, 
pi2: snd(t)
, 
infix_ap: x f y
, 
rev_implies: P 
⇐ Q
, 
rng_times: *
, 
cand: A c∧ B
Lemmas referenced : 
binomial, 
int_ring_wf, 
integ_dom_wf, 
equal_wf, 
squash_wf, 
true_wf, 
rng_car_wf, 
rng_sum-int, 
rng_nat_op_wf, 
choose_wf, 
subtype_rel_sets, 
lelt_wf, 
le_wf, 
int_seg_properties, 
nat_properties, 
decidable__le, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermVar_wf, 
intformless_wf, 
itermAdd_wf, 
itermConstant_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_term_value_add_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_wf, 
infix_ap_wf, 
rng_times_wf, 
rng_nexp_wf, 
int_seg_subtype_nat, 
false_wf, 
subtract_wf, 
itermSubtract_wf, 
int_term_value_subtract_lemma, 
int_seg_wf, 
iff_weakening_equal, 
exp_wf2, 
rng_nexp-int, 
sum_wf, 
nat_wf, 
sum_functionality, 
rng_wf, 
decidable__equal_int, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
rng_nat_op-int, 
zero-add
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
applyEquality, 
lambdaEquality, 
setElimination, 
rename, 
hypothesisEquality, 
sqequalRule, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
because_Cache, 
natural_numberEquality, 
addEquality, 
intEquality, 
productEquality, 
independent_isectElimination, 
setEquality, 
lambdaFormation, 
productElimination, 
independent_pairFormation, 
applyLambdaEquality, 
dependent_functionElimination, 
unionElimination, 
dependent_pairFormation, 
int_eqEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
computeAll, 
dependent_set_memberEquality, 
imageMemberEquality, 
baseClosed, 
independent_functionElimination, 
hyp_replacement, 
multiplyEquality, 
axiomEquality
Latex:
\mforall{}[a,b:\mBbbZ{}].  \mforall{}[n:\mBbbN{}].    ((a  +  b)\^{}n  =  \mSigma{}(choose(n;i)  *  a\^{}i  *  b\^{}(n  -  i)  |  i  <  n  +  1))
Date html generated:
2018_05_21-PM-08_27_36
Last ObjectModification:
2017_07_26-PM-05_55_10
Theory : general
Home
Index