Nuprl Lemma : binomial-int

[a,b:ℤ]. ∀[n:ℕ].  ((a b)^n = Σ(choose(n;i) a^i b^(n i) i < 1) ∈ ℤ)


Proof




Definitions occuring in Statement :  exp: i^n sum: Σ(f[x] x < k) nat: uall: [x:A]. B[x] multiply: m subtract: m add: m natural_number: $n int: equal: t ∈ T choose: choose(n;i)
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B integ_dom: IntegDom{i} int_ring: -rng rng_car: |r| pi1: fst(t) squash: T prop: crng: CRng rng: Rng nat: so_lambda: λ2x.t[x] int_seg: {i..j-} int_iseg: {i...j} so_apply: x[s] and: P ∧ Q uimplies: supposing a lelt: i ≤ j < k all: x:A. B[x] implies:  Q guard: {T} ge: i ≥  decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A top: Top le: A ≤ B less_than': less_than'(a;b) true: True iff: ⇐⇒ Q rng_plus: +r pi2: snd(t) infix_ap: y rev_implies:  Q rng_times: * cand: c∧ B
Lemmas referenced :  binomial int_ring_wf integ_dom_wf equal_wf squash_wf true_wf rng_car_wf rng_sum-int rng_nat_op_wf choose_wf subtype_rel_sets lelt_wf le_wf int_seg_properties nat_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermVar_wf intformless_wf itermAdd_wf itermConstant_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_term_value_add_lemma int_term_value_constant_lemma int_formula_prop_wf infix_ap_wf rng_times_wf rng_nexp_wf int_seg_subtype_nat false_wf subtract_wf itermSubtract_wf int_term_value_subtract_lemma int_seg_wf iff_weakening_equal exp_wf2 rng_nexp-int sum_wf nat_wf sum_functionality rng_wf decidable__equal_int intformeq_wf int_formula_prop_eq_lemma rng_nat_op-int zero-add
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesis applyEquality lambdaEquality setElimination rename hypothesisEquality sqequalRule imageElimination equalityTransitivity equalitySymmetry universeEquality because_Cache natural_numberEquality addEquality intEquality productEquality independent_isectElimination setEquality lambdaFormation productElimination independent_pairFormation applyLambdaEquality dependent_functionElimination unionElimination dependent_pairFormation int_eqEquality isect_memberEquality voidElimination voidEquality computeAll dependent_set_memberEquality imageMemberEquality baseClosed independent_functionElimination hyp_replacement multiplyEquality axiomEquality

Latex:
\mforall{}[a,b:\mBbbZ{}].  \mforall{}[n:\mBbbN{}].    ((a  +  b)\^{}n  =  \mSigma{}(choose(n;i)  *  a\^{}i  *  b\^{}(n  -  i)  |  i  <  n  +  1))



Date html generated: 2018_05_21-PM-08_27_36
Last ObjectModification: 2017_07_26-PM-05_55_10

Theory : general


Home Index