Nuprl Lemma : rng_nat_op-int

[n:ℕ]. ∀[a:ℤ].  (n ⋅ℤ-rng a)


Proof




Definitions occuring in Statement :  rng_nat_op: n ⋅e int_ring: -rng nat: uall: [x:A]. B[x] multiply: m int: sqequal: t
Definitions unfolded in proof :  rng_nat_op: n ⋅e mon_nat_op: n ⋅ e add_grp_of_rng: r↓+gp grp_op: * pi2: snd(t) pi1: fst(t) grp_id: e int_ring: -rng rng_plus: +r rng_zero: 0 nat_op: x(op;id) e uall: [x:A]. B[x] member: t ∈ T nat: implies:  Q false: False ge: i ≥  uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] not: ¬A all: x:A. B[x] top: Top and: P ∧ Q prop: itop: Π(op,id) lb ≤ i < ub. E[i] ycomb: Y lt_int: i <j infix_ap: y subtract: m ifthenelse: if then else fi  bfalse: ff decidable: Dec(P) or: P ∨ Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b
Lemmas referenced :  nat_properties satisfiable-full-omega-tt intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf zero-mul decidable__le subtract_wf intformnot_wf itermSubtract_wf int_formula_prop_not_lemma int_term_value_subtract_lemma subtype_base_sq int_subtype_base lt_int_wf bool_wf eqtt_to_assert assert_of_lt_int decidable__equal_int intformeq_wf itermAdd_wf itermMultiply_wf int_formula_prop_eq_lemma int_term_value_add_lemma int_term_value_mul_lemma eqff_to_assert equal_wf bool_cases_sqequal bool_subtype_base assert-bnot nat_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis setElimination rename intWeakElimination lambdaFormation natural_numberEquality independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll independent_functionElimination sqequalAxiom unionElimination instantiate cumulativity equalityElimination equalityTransitivity equalitySymmetry productElimination because_Cache promote_hyp

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[a:\mBbbZ{}].    (n  \mcdot{}\mBbbZ{}-rng  a  \msim{}  n  *  a)



Date html generated: 2017_10_01-AM-08_18_50
Last ObjectModification: 2017_02_28-PM-02_03_34

Theory : rings_1


Home Index