Nuprl Lemma : int_ring_wf
ℤ-rng ∈ IntegDom{i}
Proof
Definitions occuring in Statement : 
int_ring: ℤ-rng
, 
integ_dom: IntegDom{i}
, 
member: t ∈ T
Definitions unfolded in proof : 
member: t ∈ T
, 
integ_dom: IntegDom{i}
, 
crng: CRng
, 
rng: Rng
, 
int_ring: ℤ-rng
, 
rng_sig: RngSig
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
exposed-bfalse: exposed-bfalse
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
subtype_rel: A ⊆r B
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
iff: P 
⇐⇒ Q
, 
not: ¬A
, 
prop: ℙ
, 
rev_implies: P 
⇐ Q
, 
nequal: a ≠ b ∈ T 
, 
ring_p: IsRing(T;plus;zero;neg;times;one)
, 
bilinear: BiLinear(T;pl;tm)
, 
monoid_p: IsMonoid(T;op;id)
, 
group_p: IsGroup(T;op;id;inv)
, 
ident: Ident(T;op;id)
, 
assoc: Assoc(T;op)
, 
inverse: Inverse(T;op;id;inv)
, 
rng_car: |r|
, 
pi1: fst(t)
, 
rng_plus: +r
, 
pi2: snd(t)
, 
rng_zero: 0
, 
rng_minus: -r
, 
rng_times: *
, 
rng_one: 1
, 
infix_ap: x f y
, 
cand: A c∧ B
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
top: Top
, 
comm: Comm(T;op)
, 
integ_dom_p: IsIntegDom(r)
, 
true: True
, 
sq_type: SQType(T)
, 
guard: {T}
Lemmas referenced : 
eq_int_wf, 
le_int_wf, 
bool_wf, 
uiff_transitivity, 
equal-wf-base, 
int_subtype_base, 
assert_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
it_wf, 
iff_transitivity, 
bnot_wf, 
not_wf, 
iff_weakening_uiff, 
eqff_to_assert, 
assert_of_bnot, 
unit_wf2, 
equal_wf, 
decidable__equal_int, 
satisfiable-full-omega-tt, 
intformnot_wf, 
intformeq_wf, 
itermAdd_wf, 
itermVar_wf, 
int_formula_prop_not_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_add_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
itermConstant_wf, 
int_term_value_constant_lemma, 
itermMinus_wf, 
int_term_value_minus_lemma, 
itermMultiply_wf, 
int_term_value_mul_lemma, 
ring_p_wf, 
rng_car_wf, 
rng_plus_wf, 
rng_zero_wf, 
rng_minus_wf, 
rng_times_wf, 
rng_one_wf, 
comm_wf, 
subtype_base_sq, 
true_wf, 
int_entire, 
integ_dom_p_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
dependent_set_memberEquality, 
dependent_pairEquality, 
intEquality, 
lambdaEquality, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
addEquality, 
natural_numberEquality, 
minusEquality, 
multiplyEquality, 
lambdaFormation, 
unionElimination, 
equalityElimination, 
sqequalRule, 
baseApply, 
closedConclusion, 
baseClosed, 
applyEquality, 
independent_functionElimination, 
because_Cache, 
productElimination, 
independent_isectElimination, 
inrEquality, 
independent_pairFormation, 
impliesFunctionality, 
equalityTransitivity, 
equalitySymmetry, 
inlEquality, 
divideEquality, 
dependent_functionElimination, 
functionEquality, 
unionEquality, 
productEquality, 
cumulativity, 
isect_memberFormation, 
dependent_pairFormation, 
int_eqEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
computeAll, 
axiomEquality, 
independent_pairEquality, 
setElimination, 
rename, 
addLevel, 
instantiate
Latex:
\mBbbZ{}-rng  \mmember{}  IntegDom\{i\}
Date html generated:
2017_10_01-AM-08_18_36
Last ObjectModification:
2017_02_28-PM-02_03_29
Theory : rings_1
Home
Index