Nuprl Lemma : int_ring_wf

-rng ∈ IntegDom{i}


Proof




Definitions occuring in Statement :  int_ring: -rng integ_dom: IntegDom{i} member: t ∈ T
Definitions unfolded in proof :  member: t ∈ T integ_dom: IntegDom{i} crng: CRng rng: Rng int_ring: -rng rng_sig: RngSig uall: [x:A]. B[x] all: x:A. B[x] implies:  Q exposed-bfalse: exposed-bfalse bool: 𝔹 unit: Unit it: btrue: tt subtype_rel: A ⊆B uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a ifthenelse: if then else fi  bfalse: ff iff: ⇐⇒ Q not: ¬A prop: rev_implies:  Q nequal: a ≠ b ∈  ring_p: IsRing(T;plus;zero;neg;times;one) bilinear: BiLinear(T;pl;tm) monoid_p: IsMonoid(T;op;id) group_p: IsGroup(T;op;id;inv) ident: Ident(T;op;id) assoc: Assoc(T;op) inverse: Inverse(T;op;id;inv) rng_car: |r| pi1: fst(t) rng_plus: +r pi2: snd(t) rng_zero: 0 rng_minus: -r rng_times: * rng_one: 1 infix_ap: y cand: c∧ B decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top comm: Comm(T;op) integ_dom_p: IsIntegDom(r) true: True sq_type: SQType(T) guard: {T}
Lemmas referenced :  eq_int_wf le_int_wf bool_wf uiff_transitivity equal-wf-base int_subtype_base assert_wf eqtt_to_assert assert_of_eq_int it_wf iff_transitivity bnot_wf not_wf iff_weakening_uiff eqff_to_assert assert_of_bnot unit_wf2 equal_wf decidable__equal_int satisfiable-full-omega-tt intformnot_wf intformeq_wf itermAdd_wf itermVar_wf int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_add_lemma int_term_value_var_lemma int_formula_prop_wf itermConstant_wf int_term_value_constant_lemma itermMinus_wf int_term_value_minus_lemma itermMultiply_wf int_term_value_mul_lemma ring_p_wf rng_car_wf rng_plus_wf rng_zero_wf rng_minus_wf rng_times_wf rng_one_wf comm_wf subtype_base_sq true_wf int_entire integ_dom_p_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity dependent_set_memberEquality dependent_pairEquality intEquality lambdaEquality cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis addEquality natural_numberEquality minusEquality multiplyEquality lambdaFormation unionElimination equalityElimination sqequalRule baseApply closedConclusion baseClosed applyEquality independent_functionElimination because_Cache productElimination independent_isectElimination inrEquality independent_pairFormation impliesFunctionality equalityTransitivity equalitySymmetry inlEquality divideEquality dependent_functionElimination functionEquality unionEquality productEquality cumulativity isect_memberFormation dependent_pairFormation int_eqEquality isect_memberEquality voidElimination voidEquality computeAll axiomEquality independent_pairEquality setElimination rename addLevel instantiate

Latex:
\mBbbZ{}-rng  \mmember{}  IntegDom\{i\}



Date html generated: 2017_10_01-AM-08_18_36
Last ObjectModification: 2017_02_28-PM-02_03_29

Theory : rings_1


Home Index